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Preface

This book describes research works that explore different advanced optimization
techniques such as GA, PSO, ABC, HEA, DE, AIA, BBO and GEM for
mechanical design. This book also includes the modifications of PSO, HEA and
ABC to increase the effectiveness of the existing PSO, HEA and ABC techniques.
The modified techniques are validated through application to unconstrained and
constrained benchmark functions as well as to mechanical design optimization
problems. Also new hybrid optimization techniques combining ABC with PSO,
BBO, DE and GA are developed and are validated through benchmark functions
and mechanical design problems. Moreover, a new efficient and effective opti-
mization technique named as ‘‘Teaching–Learning-Based Optimization (TLBO)’’
is developed for the global optimization problems. The advantage of this new
technique is that it does not need any algorithm parameters for it to working and so
it eliminates the disadvantages of many existing optimization techniques which
need tuning of algorithm parameters.

The algorithms and computer codes for various advanced optimization tech-
niques included in this book will be very useful to the readers. This book is
expected to be very useful to the industrial product designers for realizing a
product as it presents advanced optimization techniques to make their tasks
easier, logical, efficient and effective. This book is intended for designers, prac-
titioners, managers, institutes involved in design-related projects, applied research
workers, academics and graduate students in mechanical and industrial design
engineering. As such, this book is expected to become a valuable reference for
those wishing to do research on the use of advanced optimization techniques for
solving single/multi-objective combinatorial design optimization problems.

We are grateful to Anthony Doyle, Claire Protherough and Grace Quinn of
Springer-Verlag, London, for their support and help in producing this book. I wish
to thank various researchers and the publishers of international journals for giving
us the permission to reproduce certain portions of their published research works.
Our special thanks are due to the Director, Registrar and the colleagues at
S.V. National Institute of Technology, Surat, India.
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While every attempt has been made to ensure that no errors (printing or
otherwise) enter the book, the possibility of these creeping into the book is always
there. We will be grateful to the readers if these errors are pointed out. Suggestions
for further improvement of the book will be thankfully acknowledged.

Surat, September 2011 Prof. Dr. Venkata Rao
Dr. V. J. Savsani
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Chapter 1
Introduction

Mechanical design includes an optimization process in which designers always
consider certain objectives such as strength, deflection, weight, wear, corrosion, etc.
Depending on the requirements. However, design optimization for a complete
mechanical assembly leads to a complicated objective function with a large number of
design variables. So it is a good practice to apply optimization techniques for individual
components or intermediate assemblies than a complete assembly. For example, in an
automobile power transmission system, optimization of gearbox is computationally
and mathematically simpler than the optimization of complete system.

Analytical or numerical methods for calculating the extreme values of a
function have been applied to engineering computations for a long time. Although
these methods may perform well in many practical cases, they may fail in more
complex design situations. In real design problems, the number of design
parameters can be very large and their influence on the value to be optimized (the
goal function) can be very complicated, having nonlinear character. The goal
function may have many local extrema, whereas the designer is interested in the
global extremum. Such problems cannot be handled by classical methods (e.g.
gradient methods) at all, or they only compute local extrema. In these complex
cases, advanced optimization algorithms offer solutions to the problems because
they find a solution near to the global optimum within reasonable time and
computational costs.

The optimization techniques can be classified into two distinct types as given
below:

(a) Traditional optimization techniques: These are deterministic algorithms with
specific rules for moving from one solution to the other. These algorithms have
been in use for quite some time and have been successfully applied to many
engineering design problems. Examples include nonlinear programming,
geometric programming, quadratic programming, dynamic programming,
generalized reduced gradient method, etc.

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
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(b) Advanced optimization techniques: These techniques are stochastic in nature
with probabilistic transition rules. These techniques are comparatively new
and gaining popularity due to certain properties which the deterministic
algorithm does not have. The examples include Genetic Algorithm (GA),
Differential Evolution (DE), Particle Swarm Optimization (PSO), Harmony
Elements Algorithm (HEA), Biogeography Based Optimization (BBO),
Artificial Bee Colony (ABC), Artificial Immune Algorithm (AIA), etc.

Although, traditional mathematical programming techniques had been
employed to solve optimization problems in mechanical design, these techniques
have following limitations:

• Traditional techniques do not fare well over a broad spectrum of problem
domains.

• Traditional techniques are not suitable for solving multi-modal problems as they
tend to obtain a local optimal solution.

• Traditional techniques are not ideal for solving multi-objective optimization
problems.

• Traditional techniques are not suitable for solving problems involving large
number of constraints.

Considering the drawbacks of the traditional optimization techniques, attempts
are being made to optimize the mechanical design optimization problems by using
evolutionary optimization techniques. Most commonly used evolutionary opti-
mization technique is GA. However, GA provides a near optimal solution for a
complex problem having large number of variables and constraints. This is mainly
due to difficulty in determination of optimum controlling parameters such as
population size, crossover rate and mutation rate. Therefore, the efforts must be
continued to use more recent optimization techniques to modify the existing
algorithms and to develop hybrid algorithms which are more powerful, robust and
able to provide accurate solution.

The research work reported in this book is therefore carried out keeping in view
the following objectives:

• To provide the applications of various recently developed advanced optimiza-
tion techniques to mechanical design problems such as gear design, bearing
design, spring design, clutch design, robot gripper design, etc.

• To modify the existing advanced optimization techniques so as to overcome
their limitations.

• To develop new hybrid optimization techniques by hybridization of two existing
advanced optimization techniques so as to combine their benefits.

• To develop a new optimization technique that is effective over the existing
optimization techniques.

This book is organized as follows: Chap. 2 presents the details of existing
optimization algorithms used in this book, the modifications incorporated in the
existing algorithms and the hybrid algorithms. Chapter 3 presents the applications

2 1 Introduction
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of existing advanced optimization algorithms to the mechanical design problems.
Chapter 4 presents the applications of modified optimization algorithms to con-
strained and unconstrained benchmark functions and mechanical design optimi-
zation problems. Chapter 5 presents the applications of hybrid algorithms to the
constrained and unconstrained benchmark functions and mechanical design opti-
mization problems. Chapter 6 presents the development and application of a new
optimization technique, called TLBO, to the constrained and unconstrained
benchmark functions and mechanical design optimization problems. Chapter 7
presents the applications of the TLBO and other optimization techniques to the
design optimization of some thermal equipment. Chapter 8 presents the general
conclusions of the research work reported in the book. Appendix 1 presents some
additional demonstrative examples of TLBO and Appendix 2 presents the sample
codes for the selected optimization algorithms.

The next chapter presents the details of different advanced optimization
algorithms used in this book.

1 Introduction 3
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Chapter 2
Advanced Optimization Techniques

Many difficulties such as multi-modality, dimensionality and differentiability are
associated with the optimization of large-scale problems. Traditional techniques
such as steepest decent, linear programing and dynamic programing generally fail
to solve such large-scale problems especially with nonlinear objective functions.
Most of the traditional techniques require gradient information and hence it is not
possible to solve non-differentiable functions with the help of such traditional
techniques. Moreover, such techniques often fail to solve optimization problems
that have many local optima. To overcome these problems, there is a need to
develop more powerful optimization techniques and research is going on to find
effective optimization techniques since last three decades.

Some of the well-known population-based optimization techniques developed
during last three decades are: Genetic Algorithms (GA) [16] which works on the
principle of the Darwinian theory of the survival-of-the fittest and the theory of
evolution of the living beings; Artificial Immune Algorithms (AIA) [14] which
works on the principle of immune system of the human being; Ant Colony
Optimization (ACO) [10] which works on the principle of foraging behavior of
the ant for the food; Particle Swarm Optimization (PSO) [20] which works on
the principle of foraging behavior of the swarm of birds; Differential Evolution
(DE) [35] which is similar to GA with specialized crossover and selection
method; Harmony Search (HS) [15] which works on the principle of music
improvisation in a music player; Bacteria Foraging Optimization (BFO) [27]
which works on the principle of behavior of bacteria; Shuffled Frog Leaping
(SFL) [12] which works on the principle of communication among the frogs,
Artificial Bee Colony (ABC) [18] which works on the principle of foraging
behavior of a honey bee; Biogeography-Based Optimization (BBO) [34] which
works on the principle of immigration and emigration of the species from one
place to the other; Gravitational Search Algorithm (GSA) [29] which works on
the principle of gravitational force acting between the bodies and Grenade
Explosion Method (GEM) [1] which works on the principle of explosion of

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
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grenade. These algorithms have been applied to many engineering optimization
problems and proved effective to solve some specific kind of problems.

All the above-mentioned algorithms are nature inspired population-based opti-
mization methods, but they have some limitations in one or the other aspect. Due to
this fact, more research is required to test algorithms for different problems to check
their suitability for a wide variety of problems. Research is continued to enhance the
existing algorithms to improve their performance. Enhancement is done either (a) by
modifying the existing algorithms or (b) by hybridizing the existing algorithms.
Enhancement due to modifications in the existing algorithms is reported in GA [22,
23, 28], PSO [5, 7, 25, 42], ACO [32, 45], ABC [19, 26], etc. Enhancement can also be
done by combining the strengths of different optimization algorithms, known as
hybridization of algorithms. Hybridization is an effective way to make the algorithm
efficient and it combines the properties of different algorithms. Some of such
hybridized algorithms can be found in Hui et al. [17], Wen [39], Ying [43], Yannis
and Magdalene [41], Shahla et al. [31], Tung and Erwie [36], Dong et al. [8], etc.

Brief discussion of the algorithms, their modifications and hybridizations used
in this book is presented in the following subsections.

2.1 Genetic Algorithm

Genetic Algorithm (GA) works on the theory of Darvin’s theory of evolution and
the survival-of-the fittest [16]. Genetic algorithms guide the search through the
solution space by using natural selection and genetic operators, such as crossover,
mutation and the selection.

GA encodes the decision variables or input parameters of the problem into
solution strings of a finite length. While traditional optimization techniques work
directly with the decision variables or input parameters, genetic algorithms usually
work with the coding. Genetic algorithms start to search from a population of
encoded solutions instead of from a single point in the solution space. The initial
population of individuals is created at random. Genetic algorithms use genetic
operators to create Global optimum solutions based on the solutions in the current
population. The most popular genetic operators are (1) selection, (2) crossover and
(3) mutation. The newly generated individuals replace the old population, and the
evolution process proceeds until certain termination criteria are satisfied.

2.1.1 Selection

The selection procedure implements the natural selection or the survival-of-the fittest
principle and selects good individuals out of the current population for generating the
next population according to the assigned fitness. The existing selection operators
can be broadly classified into two classes: (1) proportionate schemes, such as

6 2 Advanced Optimization Techniques
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roulette-wheel selection and stochastic universal selection and (2) ordinal schemes,
such as tournament selection and truncation selection. Ordinal schemes have grown
more and more popular over the recent years, and one of the most popular ordinal
selection operators is tournament selection. After selection, crossover and mutation
recombine and alter parts of the individuals to generate new solutions.

2.1.2 Crossover

Crossover, also called the recombination operator, exchanges parts of solutions
from two or more individuals, called parents, and combines these parts to generate
new individuals, called children, with a crossover probability. There are a lot of
ways to implement a recombination operator. The well-known crossover operators
include one-point crossover. When using one-point crossover, only one crossover
point is chosen at random, for example let there be two parent string A1 and A2 as:

A1 ¼ 1 1 1 1 j 1 1

A2 ¼ 0 0 0 0 j 0 0
ð2:1Þ

Then, one-point crossover recombines A1 and A2 and yields two offsprings A-1 and
A-2 as:

A�1 ¼ 1 1 1 1 j 1 1

A�2 ¼ 0 0 0 0 j 1 1
ð2:2Þ

2.1.3 Mutation

Mutation usually alters some pieces of individuals to form perturbed solutions. In
contrast to crossover, which operates on two or more individuals, mutation
operates on a single individual. One of the most popular mutation operators is the
bitwise mutation, in which each bit in a binary string is complemented with a
mutation probability. For example,

A ¼ 1 1 1 1 j 1 1

A�1 ¼ 0 0 0 0 j 0 1
ð2:3Þ

The step-by-step implementation of GA is explained as follows:

Step 1: Initialize GA parameters which are necessary for the algorithm. These
parameters include population size which indicates the number of individuals, number
of generations necessary for the termination criterion, crossover probability, mutation
probability, number of design variables and respective ranges for the design variables. If
binary version of GA is used then string length is also required as the algorithm
parameter.

2.1 Genetic Algorithm 7
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Step 2: Generate random population equal to the population size specified. Each
population member contains the value of all the design variables. This value of
design variable is randomly generated in between the design variable range
specified. In GA, population means the group of individuals which represents the
set of solutions.
Step 3: Obtain the values of the objective function for all the population members.
The value of the objective function so obtained indicates the fitness of the individ-
uals. If the problem is a constrained optimization problem then a specific approach
such as static penalty, dynamic penalty and adaptive penalty is used to convert the
constrained optimization problem into the unconstrained optimization problem.
Step 4: This step is for the selection procedure to form a mating pool which
consists of the population made up of best individuals. The commonly used
selection schemes are roulette-wheel selection, tournament selection, stochastic
selection, etc. The simplest and the commonly used selection scheme is the
roulette-wheel selection, where an individual is selected for the mating pool with
the probability proportional to its fitness value. The individual (solution) having
better fitness value will have more number of copies in the mating pool and so the
chances of mating increases for the more fit individuals than the less fit ones. This
step justifies the procedure for the survival of the fittest.
Step 5: This step is for the crossover where two individuals, known as parents, are
selected randomly from the mating pool to generate two new solutions known as
off-springs. The individuals from the population can go for the crossover step
depending upon the crossover probability. If the crossover probability is more,
then more individuals get chance to go for the crossover procedure. The simplest
crossover operator is the single point crossover in which a crossover site is
determined randomly from where the exchange of bits takes place. The crossover
procedure is explained through Eqs. 2.1 and 2.2.
Step 6: After crossover, mutation step is performed on the individuals of population
depending on the mutation probability. The mutation probability is generally kept
low so that it does not make the algorithm unstable. In mutation, a random site is
selected from the string of individuals and it is flapped as explained through Eq. 2.3.
Step 7: Best obtained results are saved using elitism. All elite members are not
modified using crossover and mutation operators but can be replaced if better
solutions are obtained in any iteration.
Step 8: Repeat the steps (from step 3) until the specified number of generations or
termination criterion is reached.

2.2 Artificial Immune Algorithm

The immune system defends the body against harmful diseases and infections.
B cells recognize the antigens which enter into the body. B cells circulate through
the blood. Each antigen has a particular shape that is recognized by the receptors

8 2 Advanced Optimization Techniques
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present on the B cell surface. B cells synthesize and carry antibodies on their
surfaces molecules that act like detectors to identify antigens. A B cell with better
fitting receptors and binding more tightly the antigen replicate more and survive
longer. This process of amplifying, by using proliferation, only those cells that
produce a useful B cell type is called clonal selection [11, 21, 30, 38]. Clones are
not perfect, but they are subjected to somatic permutations that result in children
having slightly different antibodies from the parent. Clonal selection guarantees
that only good B cells (i.e., with higher affinity with the antigen) can be cloned to
represent the next generation [21]. However, clones with low affinity with antigen
do not divide and will be discarded or deleted. Hence, the clonal selection enables
the body to have sufficient numbers of antigen-specific B cells to build up an
effective immune response. Mapping between the immune system and an opti-
mization problem is done as follows. The immune response represents solutions
and antigens represent the problem to solve. More precisely, B cells are considered
as artificial agents that roam around and explore an environment. In other words,
the optimization problem is described by an environment of antigens. The positive
and negative selection mechanism is used to eliminate useless or bad solutions.

The AIA starts with a random population of antibodies [21]. Affinity of the
antibody is decided from its objective function value. Select n highest antibodies to
be cloned. These antibodies are cloned depending on its affinities. If the affinity is
more for the particular antibody it will have more number of clones. It is calcu-
lated as

Nc ¼
Xn

i¼1

round
bN

i

� �
ð2:4Þ

where b is the multiplying factor controlling the number of clones and N is the
total number of antibodies. These generate repertoire, which undergoes affinity
maturation process as shown in Eq. 2.5, which is inversely proportional to its
antigenic affinity. If the affinity is high the mutation rate is low.

xi;m ¼ xi þ Aðrand½�1; 1�Þðxmax � xminÞ ð2:5Þ

where, A is a factor depending on the affinity and decreases as affinity increases.
Replace low affinity antibodies with new randomly generated antibodies given by
Eq. 2.6

xi ¼ xmin þ randð0; 1Þðxmax � xminÞ ð2:6Þ

The step-by-step implementation of AIA is explained as follows:

Step 1: Initialize AIA parameters which are necessary for the algorithm. These
parameters include population size which indicates the number of individuals,
number of generations necessary for the termination criterion, number of anti-
bodies to be cloned, multiplying factor, repertoire rate, number of design variables
and respective ranges for the design variables.

2.2 Artificial Immune Algorithm 9
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Step 2: Generate random population equal to the population size specified. Each
population member contains the value of all the design variables. This value of
design variable is randomly generated in between the design variable range
specified. In AIA, population means the group of antibodies which represents the
set of solutions.
Step 3: Obtain the values of the objective function for all the population members.
The value of the objective function so obtained indicates antibody affinity. If the
problem is a constrained optimization problem, then a specific approach such as
static penalty, dynamic penalty and adaptive penalty is used to convert the con-
strained optimization problem into the unconstrained optimization problem.
Step 4: Select the n highest affinity antibodies from the population which
comprises a new set of high affinity antibodies (Eq. 2.4). Clone the n selected
antibodies independently and proportional to their affinities. This generates a group
of clones. The higher the affinity, the higher the number of clones generated for
each of the n selected antibodies.
Step 5: The group of clones undergoes affinity maturation process which is
inversely proportional to its affinity (Eq. 2.5). A new set of solutions is generated
consisting of matured clones. Determine the affinity of the matured clones. From
this set of mature clones, reselect the highest affinity solutions. If the antigenic
affinity of this solution is better than the previous iteration solution, then replace
the population with the new one.
Step 6: Replace the lowest affinity antibodies from the population depending on
the repertoire rate, by new antibodies using Eq. 2.6.
Step 7: Repeat the steps (from step 3) until the specified number of generations or
termination criterion is reached.

2.3 Differential Evolution

The algorithm was first proposed by Storn and Price [35]. There are only three real
control parameters in the algorithm. These are: (1) differentiation (or mutation)
constant F, (2) crossover constant Cr and (3) size of population. The rest of the
parameters are (a) dimension of problem S that scales the difficulty of the opti-
mization task; (b) maximal number of generations (or iterations) G, which serves
as a stopping condition in our case and (c) high and low boundary constraints, xmax

and xmin, respectively, that limit the feasible area. DE also starts with a set of
random population which consist the initial solution to the problem. Mutant vector
vi,m is generated from three different randomly chosen target vectors. This process
can be mathematically written as [37],

vi;m ¼ xi;3 þ Fðxi;1 � xi;2Þ ð2:7Þ

where, vi,m is the obtained mutant vector. In Eq. 2.7 the second term on RHS
indicates the weighted difference of two randomly chosen target vectors. The
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mutant vector is obtained by adding the third target vector to the weighted dif-
ference term. New trial vector ui,tar is obtained from the target vector and the
mutant vector based on the crossover probability Cr. The scaling factor F is a user-
supplied constant. Trial vector and the current target vector is compared and the
best out of them is forwarded to the next generation. The optimal value of F for
most of the functions lies in the range of 0.4–1.0 [35].

The step-by-step implementation of DE is explained as follows:

Step 1: Initialize DE parameters which are necessary for the algorithm. These
parameters include population size which indicates the number of individuals,
number of generations necessary for the termination criteria, crossover constant,
mutation constant, number of design variables and respective ranges for the design
variables.
Step 2: Generate random population equal to the population size specified. Each
population member contains the value of all the design variables. This value of
design variable is randomly generated in between the design variable range
specified. In DE, population means the group of solutions.
Step 3: Obtain the values of the objective function for all the solutions. If the
problem is a constrained optimization problem, then a specific approach such as
static penalty, dynamic penalty and adaptive penalty is used to convert the con-
strained optimization problem into the unconstrained optimization problem.
Step 4: Choose three different target vectors. The chosen target vectors should be
different from the current target vector. Obtain the mutant vector using Eq. 2.7. In
Eq. 2.7, F indicates the mutation constant.
Step 5: Obtain trial vector based on the crossover constant. If the crossover con-
stant is greater than the random number between 0 and 1, then the mutant vector
becomes the trial vector; otherwise, the current target vector becomes the trial
vector.
Step 6: Selection is done between the trial vector and the current target vector. If
the objective function value of trial vector is better than the current target vector,
then the trial vector enters the new population.
Step 7: Repeat the steps (from step 3) until the specified number of generations or
termination criterion is reached.

2.4 Biogeography-Based Optimization

Biogeography-based optimization (BBO) is a population-based optimization
algorithm inspired by the natural biogeography distribution of different species
[34]. In BBO, each individual is considered as a ‘‘habitat’’ with a habitat suitability
index (HSI). A good solution is analogous to an island with a high HSI, and a poor
solution indicates an island with a low HSI. High HSI solutions tend to share their
features with low HSI solutions. Low HSI solutions accept a lot of new features
from high HSI solutions.

2.3 Differential Evolution 11
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In BBO, each individual has its own immigration rate k and emigration rate l.
A good solution has higher l and lower k and vice versa. The immigration rate and
the emigration rate are functions of the number of species in the habitat. They can
be calculated as follows

kk ¼ I 1� k

n

� �
ð2:8Þ

lk ¼ E
k

n

� �
ð2:9Þ

where, I is the maximum possible immigration rate; E is the maximum possible
emigration rate; k is the number of species of the kth individual and n is the
maximum number of species. In BBO, there are two main operators, the migration
and the mutation.

2.4.1 Migration

Consider a population of candidate which is represented by design variable. Each
design variable for particular population member is considered as suitability index
variable (SIV) for that population member. Each population member is considered as
individual habitat/Island. The objective function value indicates the HSI for the par-
ticular population member. Immigration and emigration rates are decided from the
curve given in Simon [34]. The nature of the curve is assumed to be same for immi-
gration and emigration but with opposite slopes, which behaves linearly. Value of
S represented by the solution depends on its HSI. The emigration and immigration rates
of each solution are used to probabilistically share the information between habitats. If
a given solution is selected to be modified, then its immigration rate k is used to
probabilistically modify each SIV in that solution. If a given SIV in a given solution Si

is selected to be modified, then its emigration rates l of the other solutions are used to
probabilistically decide which of the solutions should migrate its randomly selected
SIV to solution Si. The above phenomenon is known as migration in BBO.

2.4.2 Mutation

In nature a habitat’s HSI can change suddenly due to apparently random events
(unusually large flotsam arriving from a neighboring habitat, disease, natural
catastrophes, etc.). This phenomenon is termed as SIV mutation, and probabilities
of species count are used to determine mutation rates. This probability mutates low
HSI as well as high HSI solutions. Mutation of high HSI solutions gives them the
chance to further improve. Mutation rate is obtained by using following Eq. 2.10.
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mðSÞ ¼ mmax 1� Ps

Pmax

� �
ð2:10Þ

where, mmax is a user-defined parameter called mutation coefficient.
The step-by-step procedure about the implementation of BBO is explained as

follows:

Step 1: Initialize BBO parameters which are necessary for the algorithm. These
parameters include population size which indicates the number of habitats/islands,
number of generations necessary for the termination criterion, maximum immi-
gration and emigration rates, mutation coefficient, number of design variables and
respective ranges for the design variables.
Step 2: Generate random population equal to the population size specified. Each
population member contains the value of all the design variables. This value of
design variable is randomly generated in between the design variable range
specified. Every design variable in the population indicates SIVs for that respec-
tive population member (Habitat).
Step 3: Obtain the value of objective function for all population members. The value of
objective function so obtained indicates the HSI for that Habitat (population member).
If the problem is a constrained optimization problem, then a specific approach such as
static penalty, dynamic penalty and adaptive penalty is used to convert the constrained
optimization problem into the unconstrained optimization problem.
Step 4: Map the value of HSI to obtain the species count. High species count is
allotted to the population member having high HSI for maximization optimization
problem. If the optimization problem is of minimization type then low HSI
member is given high species count.
Step 5: Modify the population using the migration operator considering its
immigration and emigration rates. If a given solution is selected to be modified,
then its immigration rate k is used to probabilistically modify each suitability
index variable (SIV) in that solution. If a given SIV in a given solution Si is
selected to be modified, then its emigration rates l of the other solutions are used
to probabilistically decide which of the solutions should migrate the randomly
selected SIV to solution Si. Pseudo code for migration is given as follows.
Select Hi with probability proportional to ki (Hi is any solution vector)

If Hi is selected

For j = 1 to n (n is population size)

Select Hj with probability proportional to li

If Hj is selected

Randomly select an SIV r from Hj

Replace a random SIV in Hi with r
end

end
end
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Step 6: Modify population using mutation operator. Calculate probability of
existence from the value of immigration and emigration rates as explained earlier.
Also calculate the mutation rate considering the user-defined mutation coefficient
and probability of existence. The pseudo code for mutation is given as follows:

For j = 1 to m (m is number of design variables)

Use ki and li to compute the probability Pi

Select SIV Hi(j) with probability proportional to Pi and mutation rate
If Hi(j) is selected

Replace Hi(j) with a randomly generated SIV
end

end

Step 7: Best obtained results are saved using elitism. All elite members are not
modified using migration and mutation operators but can be replaced if better
solutions are obtained in any iteration.
Step 8: Repeat the steps (from step 3) until the specified number of generations or
termination criterion is reached.

2.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation technique devel-
oped by Kennedy and Eberhart [20]. It exhibits common evolutionary computation
attributes including initialization with a population of random solutions and searching
for optima by updating generations. Potential solutions, called particles, are then
‘‘flown’’ through the problem space by following the current optimum particles.
The particle swarm concept was originated as a simulation of a simplified social system.
The original intent was to graphically simulate the graceful but unpredictable chore-
ography of a bird flock. Each particle keeps track of its coordinates in the problem space,
which are associated with the best solution (fitness) it has achieved so far. This value is
called ‘pBest’. Another ‘‘best’’ value that is tracked by the global version of the particle
swarm optimization is the overall best value and its location obtained so far by any
particle in the population. This location is called ‘gBest’. The particle swarm optimi-
zation concept consists of, at each step, changing the velocity (i.e. accelerating) of each
particle toward its ‘pBest’ and ‘gBest’ locations (global version of PSO). Acceleration is
weighted by a random term with separate random numbers being generated for
acceleration toward ‘pBest’ and ‘gBest’ locations. The updates of the particles are
accomplished as per the following Eqs. 2.11 and 2.12.

Viþ1 ¼ w � Vi þ c�1r�1 pBesti � Xið Þ þ c�2r�2 gBesti � Xið Þ ð2:11Þ

Xiþ1 ¼ Xi þ Viþ1 ð2:12Þ

Equation 2.11 calculates a new velocity (Vi+1) for each particle (potential solution)
based on its previous velocity, the best location it has achieved (‘pBest’) so far,
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and the global best location (‘gBest’), the population has achieved. Equation 2.12
updates individual particle’s position (Xi) in solution hyperspace. The two random
numbers ‘r1’ and ‘r2’ in Eq. 2.11 are independently generated in the range [0, 1].
It is observed from Eq. 2.11 that the LHS indicates the velocity term and the RHS
has three terms: the first term contains the multiplication of w and Vi, where w is
the constant parameter and Vi is the velocity term which indicates the correct
dimension as that of LHS, the second and third terms indicate the rate of change of
position toward pBesti and gBesti from the current position Xi respectively and so
both the terms are to be multiplied by 1/Dt, where Dt indicates the time step value.
To simplify the algorithm and to reduce the algorithm parameters, the value of Dt
is assumed to be unity. Moreover, in Eq. 2.12 the second term on RHS is to be
multiplied by Dt, which reduces the term to match the dimension of the position
(Xi+1) on LHS. So, the Eqs. 2.11 and 2.12 are the final equations after assuming the
value of Dt as unity.

The acceleration constants ‘c1’ and ‘c2’ in Eq. 2.11 represent the weighting of
the stochastic acceleration terms that pull each particle toward ‘pBest’ and ‘gBest’
positions. ‘c1’ represents the confidence the particle has in itself (cognitive
parameter) and ‘c2’ represents the confidence the particle has in swarm (social
parameter). Thus, adjustment of these constants changes the amount of tension in
the system. Low values of the constants allow particles to roam far from target
regions before being tugged back, while high values result in abrupt movement
toward, or past through target regions [9]. The inertia weight ‘w’ plays an
important role in the PSO convergence behavior since it is employed to control the
exploration abilities of the swarm. The large inertia weights allow wide velocity
updates allowing to globally explore the design space while small inertia weights
concentrate the velocity updates to nearby regions of the design space. The
optimum use of the inertia weight ‘‘w’’ provides improved performance in a
number of applications. The effect of w, c1 and c2 on convergence for standard
numerical benchmark functions was provided by Bergh and Engelbrecht [4].

Particle’s velocities on each dimension are confined to a maximum velocity
parameter Vmax, specified by the user. If the sum of accelerations would cause the
velocity on that dimension to exceed Vmax, then the velocity on that dimension is
limited to Vmax.

Unlike genetic algorithm, PSO algorithm does not need complex encoding and
decoding process and special genetic operator. PSO takes real number as a particle
in the aspect of representation solution and the particles update themselves with
internal velocity. In this algorithm, the evolution looks only for the best solution
and all particles tend to converge to the best solution.

The step-by-step implementation of PSO is explained as follows:

Step 1: Initialize PSO parameters which are necessary for the algorithm. These
parameters include population size which indicates the number of individuals,
number of generations necessary for the termination criterion, cognitive constant,
social constant, variation of inertia weight, maximum velocity, number of design
variables and respective ranges for the design variables.
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Step 2: Generate random population equal to the population size specified. Each
population member contains the value of all the design variables. This value of
design variable is randomly generated in between the design variable range
specified. In PSO, population means the group of birds (particles) which represents
the set of solutions.
Step 3: Obtain the values of the objective function for all the population members.
For the first iteration, value of objective function indicates the pBest for the
respective particle in the solution. Identify the particle with best objective function
value which identifies as gBest. If the problem is a constrained optimization
problem, then a specific approach such as static penalty, dynamic penalty and
adaptive penalty is used to convert the constrained optimization problem into the
unconstrained optimization problem.
Step 4: Update the velocity of each particle using Eq. 2.11. Check for the maxi-
mum velocity. If the velocity obtained using Eq. 2.11 exceeds the maximum
velocity, then reduce the existing velocity to the maximum velocity.
Step 5: Update the position of the particles using Eq. 2.12. Check all the design
variables for the upper and lower limits.
Step 6: Obtain the value of objective function for all the particles. The new
solution replaces the pBest if it has better function value. Identify the gBest from
the population. Update the value of inertia weight if required.
Step 7: Best obtained results are saved using elitism. All elite members are not
modified using crossover and mutation operators but can be replaced if better
solutions are obtained in any iteration.
Step 8: Repeat the steps (from step 4) until the specified number of generations or
termination criterion is reached.

2.5.1 Modifications in PSO

PSO suggested by Kennedy and Eberhart [20] had no inertia factor term in the
algorithm. It was first suggested by Shi and Eberhert [33] and was shown that PSO
performs better with introduction of inertia weight factor term. Many research
works were reported for the variation of w to increase the performance of PSO. Shi
and Eberhart [33] suggested linear variation of weight factor by using following
expression:

w ¼ ð maxw�minwð Þ�ðmaxiter � curiterÞ =maxiterÞ þminw ð2:13Þ

where, maxw and minw are the maximum and minimum value of weight factor
(w) respectively; maxiter is the maximum number of generations and curiter is the
current iteration of the algorithm. Generally maxw is taken as 0.9 and minw as 0.4.
Xiaohui et al. [40] suggested random weight factor as:

w ¼ 0:5þ 0:5� randð Þ ð2:14Þ
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where, rand is any random number from 0 to 1. Yong et al. [44] presented Chaotic
descending inertia weight. The strategy for the logistic mapping changes inertia
weight as:

w ¼ maxw�minwð Þ� maxiter � curiterð Þ =maxiterð Þ þminw� zrð Þ ð2:15Þ

where, zr = 4 * (rand) * (1-rand). Chaotic descending inertia weight is also
applied to the inertia weight suggested by Xiaohui et al. [40] as

w ¼ 0:5� zrð Þ þ 0:5� randð Þ ð2:16Þ

where, rand is any random number between 0 and 1.
So, it is observed that there is a significant role of inertia weight for the

performance of PSO. Experimentation is carried out in this book to suggest a new
inertia weight for the PSO so as to increase its performance. A new variation of
inertia weight variation is suggested in this book to increase the success rate for
finding the global solution in a few iterations. This saves computation time and
less number of function evaluations will be required to arrive at the optimum
solution. The procedure to alter the weight factor is explained below.

Set the initial value for the weight (generally 0.9)
Start loop
Set Neww = w
Perform PSO operation
w_factor = Neww/maxiter
Set w = w–w_factor
End loop

The above variation of weight factor follows a nonlinear behavior and it
depends on the value of initial weight and maximum number of generations. PSO
with the above inertia weight factor is referred to as PSO_M_1 in this book.
Moreover, Chaotic descending inertia weight suggested by Yong et al. [44] is also
incorporated in the modified inertia weight. Chaotic descending inertia weight
changes the value of Neww=w as Neww=w*(zr). PSO with modified inertia weight
and chaotic descending inertia weight is referred to as PSO_M_2 in this book.

2.6 Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the
intelligent foraging behavior of honey bee swarm. The colony of artificial bees
consists of three groups of bees: employed bees, onlookers and scouts [3, 18]. An
employed bee searches the destination where food is available. They collect the food
and return back to its origin, where they perform waggle dance depending on the
amount of food available at the destination. The onlooker bee watches the dance and
follows the employed bee depending on the probability of the available food.
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So, more onlooker bees will follow the employed bee associated with the destination
having more amount of food. The employed bee whose food source becomes
abandoned behaves as a scout bee and it searches for the new food source. This
principle of foraging behavior of honey bee is used to solve optimization problems
by dividing the population into two parts consisting of employed bees and onlooker
bees. An employed bee searches the solution in the search space and the value of
objective function associated with the solution is the amount of food associated with
that solution. Employed bee updates its position by using Eq. 2.17 and it updates
new position if it is better than the previous position, i.e. it follows greedy selection.

vij ¼ xij þ Rijðxij � xkjÞ ð2:17Þ

where, vij is the new position of employed bee, xij is the current position of
employed bee, k is a random number between (1, (population size)/2) = i and j =
1, 2,…, Number of design variables. Rij is a random number between (-1, 1).

An onlooker bee chooses a food source depending on the probability value
associated with that food source, p i, calculated by using Eq. 2.18.

pi ¼
Fi

PN=2

n¼1
Fn

ð2:18Þ

where, Fi is the fitness value of the solution i and N/2 is the number of food
sources which is equal to the number of employed bees.

Onlooker bees also update its position by using Eq. 2.17 and also follow greedy
selection. The Employed bee whose position of the food source cannot be
improved for some predetermined number of cycles than that food source is called
abandoned food source. That employed bee becomes scout and searches for the
new solution randomly by using Eq. 2.19.

x j
i ¼ x j

min þ rand ð0; 1Þðx j
max � x j

minÞ ð2:19Þ

The value of predetermined number of cycles is an important control parameter
of the ABC algorithm, which is called ‘‘limit’’ for abandonment. The value of limit
is generally taken as Number of employed bees*Number of design variables.

The step-by-step implementation of ABC is explained as follows:

Step 1: Initialize ABC parameters which are necessary for the algorithm. These
parameters include population size which indicates the number of individuals,
number of generations necessary for the termination criterion, number of
employed bees, number of onlooker bees, limit, number of design variables and
respective ranges for the design variables.
Step 2: Generate random population equal to the number of employed bees
(generally number of employed bees are half of the population size) specified.
Each population member contains the value of all the design variables. This value
of design variable is randomly generated in between the design variable range
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specified. In ABC, population means the group of honey bees which represents the
set of solutions.
Step 3: Obtain the values of the objective function for all the population members.
The objective function value in ABC indicates the amount of nectar for the food
source. If the problem is a constrained optimization problem, then a specific
approach such as static penalty, dynamic penalty and adaptive penalty is used to
convert the constrained optimization problem into the unconstrained optimization
problem.
Step 4: Update the value of employed bees using Eq. 2.17. Obtain the value of
objective function. If the new solution is better than the existing solution, replace
the existing solution with the new one. This step indicates the greedy selection
procedure for the employed bee phase.
Step 5: Onlooker bees proportionally choose the employed bees depending on the
amount of nectar found by the employed bees. Mathematically, for the onlooker
bee phase, the solution from the employed bee phase is chosen proportionally
based on its objective function value (Eq. 2.18).
Step 6: Update the value of onlooker bees using Eq. 2.17. Obtain the value of
objective function. If the new solution is better than the existing solution, replace
the existing solution with the new one. Identify the abundant solutions using the
limit value. If such solutions exist then these are transformed into the scout bees
and the solution is updated using Eq. 2.19.
Step 7: Repeat the steps (from step 4) until the specified number of generations or
termination criterion is reached.

2.6.1 Modifications in ABC

As suggested by Karaboga [18], ABC modifies the solution by using the following
Eq. 2.20:

vij ¼ xij þ Rij xij � xkj

� �
ð2:20Þ

where, Rij is uniformly distributed random number between –1 and 1. Modification in
ABC is carried out by changing Eq. 2.20. Uniformly distributed random number is
replaced by normally distributed random number with mean equal to zero and
svariance equal to one. And also the expression (xij - xik) is replaced by (xbestj-xij).
Here, xbestj is the best solution from the population at any particular iteration. The
reason for this modification is that, in the Eq. 2.20 the solution tries to move toward
any random solution (xik) and there is no guarantee for the xik to be better than xij.
So solution can move toward worst solution also, which may require more compu-
tational time to reach the optimum solution. By replacing xik with xbestj, the solution
will try to move toward the best solution in every iteration which will lead to opti-
mum solution with less computational effort.
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2.7 Harmony Elements Algorithm

According to Chinese philosophy, the five kinds of substances (wood, fire, earth,
metal and water) are essential things in the daily life of mankind. Among the five
elements, there exist the relations of generation and restriction [24, 46]. The order of
generation is: wood generates fire, fire generates earth, earth generates metal, metal
generates water and water, in its turn, generates wood. Relationship of restriction for
the five elements works in the following order: wood restricts earth, earth water,
water fire, fire metal and metal wood. So, they oppose each other and at the same time
cooperate with each other, thus a relative balance is maintained between generation
and restriction, to ensure normal growth and development of things in nature.

Harmony elements algorithm follows the generation and restriction rules
between the elements of the string. It starts the procedure with a random popu-
lation. Like GA, each individual in the population is made up of string which
represents the design variables. Dissimilar to GA, the algorithm initializes the
solutions as strings of 0s, 1s, 2s, 3s and 4s to represent ‘earth’, ‘water’, ‘wood’,
‘fire’ and ‘metal’, five elements, respectively. Population is modified according to
generation and restriction rules to reach its harmonious state.

2.7.1 Modifications in HEA

Harmony Elements Algorithm starts with a random population. Population size,
length of each individual string, number of input variables, upper bound and lower
bound of input variables are to be initialized at the start of the algorithm. The
individual strings will consist of 0s, 1s, 2s, 3s and 4s. Each number corresponds to
an element. In this book the initial population matrix is denoted by Q. The basic
version of the algorithm reported by Cui and Guo [6] generates random population
equal to the population size. Here only one-fifth of the total population size is
randomly generated; rest is generated from Q following the generation rule of five
elements. This reduces the functional evolutional by 4*population size*number of
generations. Four different matrices A, B, C and D are generated from matrix Q by
following generation rule (Generation rule: 2 create 3, 3 create 0, 0 create 4, 4
create 1 and 1 create 2.). The above procedure helps to maintain initial harmonious
state in the population. The basic algorithm generates one random matrix E equal
to the population size to maintain the diversity in the population. Modification is
incorporated by introducing the mutation operator to reduce the function evalua-
tions by 1*population size*number of generations. Mutation is incorporated
depending on the specified probability. Generally probability for the mutation is
very low. The purpose of mutation is to maintain the diversity within the popu-
lation so that algorithm does not get trapped in local optima. Mutation is carried
out by changing the element in the string at randomly selected site. The above
procedure for the mutation is same as that in GA. Mutation in HEA is shown as
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follows:
Before mutation

4 3 2 0 2 0 0 4 1 1 1 2
Mutation

After mutation
4 3 2 0 2 0 0 4 3 1 1 2

There is no bound to follow generation and restriction rule for the mutation.
Decode each individual string and evaluate the fitness values of matrix Q, A, B, C
and D. Fitness value corresponds to the value of objective function. Rank indi-
vidual strings in matrix Q, A, B, C and D by fitness value. Check all the matrices
for the restriction rule. As all the matrices are ranked and rearranged, the first row
of the matrix represents the best string so far. For instance, the best individual
string is Q (1, j), for matrix Q. If other individual strings Q (i+1, j) is restricted by
Q (1, j), then it is modified by replacing the element following the generation rule.
If Q (i, j) and Q (i+1, j) are same, then both of them are modified according to
generation rule. (i indicates the population member and j indicated the element
number in the string). The restriction rule in HEA is given as follows:

1 0 3 4 3 4 4 1 2 2 2 3
2 3 3 0 0 0 4 1 1 2 2 4
0 0 3 1 4 4 4 2 1 1 2 2

Generation based on restriction

1 0 3 4 3 4 4 1 2 2 2 3
2 3 0 0 0 0 1 1 2 2 3 1
0 0 0 1 1 4 1 2 2 1 3 2

Merge all the matrices A, B, C, D and Q into one matrix. Decode each indi-
vidual string and evaluate the fitness values of matrix and then rank individual
strings of matrix by fitness value. The so obtained matrix will be the new matrix Q
for the next iteration.

The step-by-step procedure about the implementation of HEA is explained as
follows:

Step 1: Initialize HEA parameters which are necessary for the algorithm to pro-
ceed. These parameters include population size, number of generations necessary
for the termination criterion, string length, number of design variables, design
variable ranges, and mutation rate.
Step 2: Generate initial population considering all the design variables. All the
design variables are initially coded using the string consisting of 0, 1, 2, 3 and 4.
Strings for each design variables are combined to form a single string. Initial
population is created considering the combined strings which gives matrix Q as

Matrix Q: Randomly generated population
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1 0 3 4 3 4 4 1 2 2 2 3 : :
2 3 3 0 0 0 4 1 1 2 2 4 : :
0 0 3 1 4 4 4 2 1 1 2 2 : :
: : : : : : : : : : : :
: : : : : : : : : : : :

Step 3: All other matrices A, B, C and D are created from matrix Q following the
generation rule (Generation rule: 2s create 3s, 3s create 0s, 0s create 4s, 4s create
1s, 1s create 2s) as given below.

Matrix Q: Randomly generated population

1 0 3 4 3 4 4 1 2 2 2 3
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Generation rule
Corresponding Matrix A: Created from Matrix Q

2 4 0 1 0 1 1 2 3 3 3 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Generation rule
Corresponding Matrix B: Created from Matrix A

3 1 4 2 4 2 2 3 0 0 0 4
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Generation rule
Corresponding Matrix C: Created from Matrix B

0 2 1 3 1 3 3 0 4 4 4 1
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Generation rule
Corresponding Matrix D: Created from Matrix C

4 3 2 0 2 0 0 4 1 1 1 2
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

After the creation of all the matrices, all the design variables are decoded and
mapped for the considered design variable range.

Step 4: Mutation is carried out considering the mutation probability. Mutation
consists of changing one of the bits randomly in the chromosome and so it leads to
maintain the diversity in the population and it also does not allow the algorithm to
get trapped at local optima. Mutation phenomenon is explained in the earlier
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section. After performing mutation operation all the matrices are arranged in the
ascending order of their objective function value as all the considered problems are
for the minimization.
Step 5: Apply generation based on restriction rule for all the matrices and then
merge all the matrices to form a single matrix which is the total population size
considered. After merging all the matrices they are again arranged in the ascending
order. From this arranged matrix one-fifth of the population is selected starting
from row one and gives again matrix Q for the next generation. This leads to the
best population members obtained in the particular generation. This completes one
generation.
Step 6: Repeat the steps (from step 3) until the specified termination criterion is
reached.

2.8 Hybrid Algorithms

For the population-based optimization methods, the terms exploration and exploi-
tation have been playing an important role in describing the working of an algorithm.
Use of existing information is known as ‘exploitation’. Generation of new solutions
in the search space is termed as ‘exploration’. As exploitation and exploration are the
opposing forces, its balance is required for the algorithm to search for the global
optimum solutions. Any selection procedure in the algorithm is generally charac-
terized as exploitation because the fitness (information) of the individuals is used
to determine whether or not an individual should be exploited. So, exploration and
exploitation are two important aspects in the population-based optimization
algorithms. However, different algorithms employ different operators for exploration
and exploitation.

In ABC, a new solution vector is calculated using the current solution and a
randomly chosen solution from the population indicates the explorative ability of
the algorithm. Moreover, a fitness-based probabilistic selection scheme is used in the
ABC algorithm which indicates the exploitation tendency of the algorithm. ABC also
has the diversification controlled by the random selection process in the scout bees
phase which makes ABC escape from local minima. However, in ABC, a greedy
selection scheme is applied between the new solution and the old one and the better
one is preferred for inclusion in the population which once again indicates the
exploitation tendency of the algorithm. In PSO, a new position vector is calculated
using the particle’s current and best solution and the swarm’s best solution. In PSO,
the new solution is replaced with the old one without considering which one is better.
So, PSO has only explorative tendency and it lacks the exploitation ability. In DE, the
existing solution is updated by the difference of the two existing solutions which is
weighted by a constant scaling factor, while in ABC it is weighted by a random step
size. So, DE also possesses the explorative ability like ABC for updating the
solutions. DE also has explicit crossover and also employs greedy selection between
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the current solution and a new solution. The crossover and greedy selection indicate
the exploitation tendency of the DE algorithm. GA also uses both exploration and
exploitation of the solutions. The crossover and the mutation operators indicate the
exploration ability of the GA algorithm. The selection scheme employed in GA
algorithm indicates its exploitation tendency as the information of the individuals is
used for the further processes of the algorithm. BBO works by exchanging the design
variables from one solution to the other based on the immigration and emigration rate
which is similar to the crossover procedure of the GA and so it indicates the
explorative ability of the algorithm. But, the mutation process in BBO uses the
probability of the solution to decide whether the solution is to be mutated or not. So,
mutation process in BBO indicates the exploitation tendency of the algorithm.

It is observed from the above discussion that all the described algorithms have
different exploration and exploitation ability. ABC updates the solution in the
employed bee phase and generates the new solution by exploration and the greedy
selection process is done on the new solution by exploitation. Furthermore, the
solutions are exploited by using the proportional selection in the onlooker bee phase
and again the new solutions are generated in the onlooker bee phase by exploration.
Moreover, the exploration in the employed bee phase and the onlooker bee phase is
similar as it is using the similar mathematical expression. Motivated by this point, it
is decided to investigate the onlooker bee phase by using some other mathematical
expression for the exploration. ABC uses three different exploitation mechanisms
(two for the greedy selection and one for the proportional selection) in the onlooker
bee phase. The investigation is also carried out to reduce the exploitation in ABC by
removing the proportional selection of the onlooker bee. The exploration of the
onlooker bee is replaced by the exploration mechanisms of PSO, DE, BBO and GA
separately which results in the four different hybrid algorithms.

All hybrid algorithms are developed by keeping ABC as the common algo-
rithm. The four different hybrid algorithms that are developed are HPABC (Hybrid
Particle swarm based Artificial Bee Colony), HBABC (Hybrid Biogeography-
based Artificial Bee Colony), HDABC (Hybrid Differential evolution based
Artificial Bee Colony) and HGABC (Hybrid Genetic algorithm based Artificial
Bee Colony). All the developed hybrid algorithms start with the employed bee
phase of ABC and then the onlooker bee phase is replaced by the searching
mechanism of other algorithms. All the hybrid algorithms are discussed as follows:

2.8.1 HPABC

Both ABC and PSO are good at exploring the search space. HPABC is developed
to combine the advantages of both ABC and PSO. HPABC starts with the initial
population and updates the solution by following the searching mechanism of the
employed bees in ABC. The solutions obtained after the employed bee phase
follows the mechanism of particle swarm optimization. The pseudo code for
HPABC is given below:
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START

Initialize Population size, number of generations, value of w, c1 and c2,
Vmax and range of design variables.
Generate the initial population and evaluate the fitness for each individual

For i =1 to number of generations

For i = 1 to Population size

Produce new solutions for the employed bees and evaluate them
(Eq. 2.17)
Replace new solution if it is better than the previous one

End

For i = 1 to Population size

Calculate the velocity of each solution (Eq. 2.11)
Check the obtained velocity for the limit (Vmax)
Produce new solutions (Eq. 2.12)
Replace new solution if it is better than the previous

End
End
STOP

It is observed from the above pseudo code that there is only a little increase in
the computational effort of HPABC as compared to basic ABC. However, HPABC
eliminates the proportional selection for the onlooker bees and also the scout bees.
Solution is updated after the employed bee phase by following the search mech-
anism of particle swarm optimization and hence it combines the strength of both
the algorithms.

2.8.2 HBABC

ABC is good at exploring the search space and locating the region of global
minimum. On the other hand, BBO has a good exploitation searching tendency for
global optimization. Based on these considerations, in order to maximize the
exploration and the exploitation a HBABC approach is proposed which combines
the strength of ABC and BBO. The pseudo code for HBABC is given below:

START

Initialize Population size, number of generations, immigration rates,
emigration rates, mutation rate and range of design variables.

Generate the initial population and evaluate the fitness for each individual

For i = 1 to number of generations
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For i = 1 to Population size

Produce new solutions for the employed bees and evaluate them
(Eq. 2.17)

Replace new solution if it is better than the previous one

End
For each individual, map the fitness to the number of species
Calculate the immigration rate ki and the emigration rate li for each

individual Xi

For i = 1 to Population size

Select Xi with probability proportional to ki

if rand(0, 1) \ ki

For j = 1 to N

Select Xj with probability proportional to lj

if rand(0, 1) \ lj

Randomly select a variable r from Xj

Replace the corresponding variable in Xi with r
Endif

Endif
End
Replace new solution if it is better than the previous one

End
End
STOP

It is observed from the above pseudo code that there is only a little increase in
the computational effort of HBABC as compared to basic ABC. However,
HBABC eliminates the proportional selection for the onlooker bees and also the
scout bees. Solution is updated after the employed bee phase by following the
search mechanism of Biogeography-based optimization and hence it combines the
strength of both the algorithms.

2.8.3 HDABC

ABC and DE have different searching capability and the searching mechanism. Both
the algorithms are good at exploring the search space. HDABC is developed to
combine the advantages of both ABC and DE. HDABC starts with the initial popu-
lation and updates the solution by following the searching mechanism of the employed
bees in ABC. The solutions obtained after the employed bee phase follows the
mechanism of differential evolution. The pseudo code for HDABC is given below.
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START

Initialize Population size, number of generations, value of F, and C and
range of design variables.

Generate the initial population and evaluate the fitness for each
individual

For i = 1 to number of generations

For i = 1 to Population size

Produce new solutions for the employed bees and evaluate
them (Eq. 2.17)
Replace new solution if it is better than the previous one

End
For i = 1 to Population size

Generate mutant vector by using three randomly selected solutions
(Eq. 2.7)

Generate trial vector based on crossover probability
If trial vector is better than the current target vector, replace the current
solution with the trial solution.

End
End

STOP

It is observed from the above pseudo code that there is only a little increase in
the computational effort of HDABC as compared to basic ABC. However,
HDABC eliminates the proportional selection for the onlooker bees and also the
scout bees. Solution is updated after the employed bee phase by following the
search mechanism of differential evolution and hence it combines the strength of
both the algorithms.

2.8.4 HGABC

ABC and GA are also having different searching capability and the searching
mechanism. ABC is good in the exploration of the search space while GA uses
both exploration and exploitation for finding the solution. HGABC is developed to
combine the advantages of both ABC and DE. HGABC also starts with the initial
population and updates the solution by following the searching mechanism of the
employed bees in ABC. The solutions obtained after the employed bee phase
follows the mechanism of genetic algorithm to further enhance the solution. The
pseudo code for HGABC is given below.
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START

Initialize Population size, number of generations, crossover probability,
mutation probability and range of design variables.

Generate the initial population and evaluate the fitness for each individual

For i=1 to number of generations

For i = 1 to Population size

Produce new solutions for the employed bees and evaluate them
(Eq. 2.17)

Replace new solution if it is better than the previous one

End
For i = 1 to Population size

Update solutions by using crossover according to crossover probability
Update solutions by using mutation according to mutation probability
Replace solutions if it is better than the existing

End
End
STOP

It is observed from the above pseudo code that there is only a little increase in the
computational effort of HGABC as compared to basic ABC. However, HGABC
eliminates the proportional selection for the onlooker bees and also the scout bees.
Solution is updated after the employed bee phase by following the search mechanism
of genetic algorithm and hence it combines the strength of both the algorithms.

2.9 Shuffled Frog Leaping Algorithm

The shuffled frog leaping algorithm is an algorithm based on memetic meta-
heuristic. It was brought forward and developed by Eusuff et al. [13]. This algo-
rithm uses the mode of memetic evolvement among frog subgroups in local
exploration. The algorithm uses the shuffled strategy and allows the message
changing in local exploration. The shuffled frog leaping algorithm combines the
advantages of memetic evolvement algorithm and particle swarm optimization
(PSO). The algorithm changes message not only in the local exploration but also in
the global exploration. So, the local and the global are combined well in the SFLA.
The local search makes memetic to transfer among the individuals and the shuffled
strategy makes memetic to transfer among the global. As genetic algorithm (GA)
and particle swarm optimization (PSO), the shuffled frog leaping algorithm
(SFLA) is an optimization algorithm based on colony.

The SFLA is a combination of determinacy method and random method. The
determinacy strategy allows the algorithm to exchange messages effectively. The
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randomicity ensures the algorithm’s flexibility and robustness. The SFLA pro-
gresses by transforming frogs (solutions) in a memetic evolution. In this algorithm,
individual frogs are not so important; rather, they are seen as hosts for memes and
described as a memetic vector. In the SFLA, the population consists of a set of
frogs (solutions) that is partitioned into subsets referred to as memeplexes. The
different memeplexes are considered as different cultures of frogs, each performing
a local search. Within each memeplex, the individual frogs hold ideas, which can
be influenced by the ideas of other frogs, and evolve through a process of memetic
evolution. After a defined number of memetic evolution steps, ideas are passed
among memeplexes in a shuffling process. The local search and the shuffling
processes continue until defined convergence criteria are satisfied.

The algorithm begins the random selection of frog groups. The frog groups are
divided to some subgroups. These subgroups can accomplish the local exploration
independently and in different directions. A frog of each subgroup can affect others
in the subgroup. So, they undergo the memetic evolution. The memetic evolution
improves the individual memetics quality and strengthens the executive ability to
goal. It is possible to increase the good frog’s weight and to decrease the bad frog’s
weight for a good goal. When some memetics accomplish the evolution, the frog
subgroups are shuffled. The memetics are optimized in global scope and produce
some new frog subgroups by mixture mechanism.

The shuffling enhances the quality of memetics which are affected by the dif-
ferent subgroups. The local exploration and the global exploration are shuffled
until the end of the constringency condition. The balance strategy between the
global message exchange and local deep search makes the algorithm to jump out
the local extremum easily (Yue et al., [45]). The flowchart of SFLA algorithm is
shown in Fig. 2.1.

2.10 Grenade Explosion Algorithm

The idea of the presented algorithm is based on observation of a grenade explo-
sion, in which the thrown pieces of shrapnel destruct the objects near the explosion
location. Le is the length of explosion along each coordinate, in which the thrown
piece of shrapnel may destruct the objects. The loss caused by each piece of
shrapnel is calculated. A high value for loss per piece of shrapnel in an area
indicates there are valuable objects in that area. To make more loss, the next
grenade is thrown where the greatest loss occurs. Although the objects near gre-
nade’s location are more likely to be damaged, the probability of destruction is still
kept for farther objects by choosing a high value for Le. This process would result
in finding the best place for throwing the grenades, even though shrapnel cannot
discover this area in early iterations. The loss caused by destruction of an object is
considered as the fitness of the objective function at the object’s location. Suppose
that X is the current location of a grenade and X = {Xm}, m = 1, 2,…, n. n is the
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search space dimension and is equal to the number of independent variables. Now
Nq pieces of shrapnel are produced by the grenade explosion and destruct objects
that are in X0j location (from [1]; reprinted with permission from Elsevier):

X0 j ¼ Xm þ sign rmð Þ � p rmj j � Lef g; j ¼ 1; 2. . .. . .Nq ð2:21Þ

No

Yes

No
Yes

Yes

No

Yes

No

No

Yes

Replace Pb by Pg

Is new frog 
better?

Generate a frog randomly

A

im = im +1 im =0

iN = 0 iN = iN+1

Apply Equation 3.1

Is new frog 
better?

Start

Population size (F)
Counter of memeplex (im)

Iterations (iN)

Generate Population F

Evaluate Fitness of F
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Partition in m memeplex

Local search (A)

Shuffle the m memeplexes

Is 
Convergence 

satisfied?

Determine the best 
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End

Replace worst frog

im=no. of 
memeplex

iN=no. of 
iterations

Determine Pb, Pw, Pg.

Fig. 2.1 Flowchart of SFLA (from [2]; reprinted with permission from Springer Science+
Business Media)
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where rm is a uniformly distributed random number in [-1, 1] and p is a constant. A
high value for p lets pieces of shrapnel search the region near the exploded grenade
more accurately, while a low one lets them to explore farther regions better.

Considering Eq. 2.21, it is obvious that exploration for more valuable items
performs in an n-dimensional cubic space extended 2Le units along each coordinate and
the grenade is located at the center of this cube. To use this algorithm, an independent
variable range is scaled to [-1, 1]. Using Eq. 2.21, some produced shrapnel may collide
to objects outside the feasible space. To increase the convergence rate and exploration
of near-boundary regions more accurately, such a collision location is transported to a
new location inside the feasible region according to the following scheme:

If X0 j doesn’t belong to �1; 1½ �n; B0j ¼ X0j=Largest component of X0j in value
� �

ð2:22Þ

B00j ¼ r0j � B0j � X
� �

þ X ð2:23Þ

j ¼ 1 to Nq shrapnel numberð Þ and 0\ r0j\1 random numberð Þ

where, X0j is the collision location outside the feasible space and B00j is the new
location inside the feasible space. One of the special concepts of this algorithm is
the agent’s territory radius (Rt), which means an agent (in this algorithm agents are
grenades) does not let other agents come closer than a specific distance, which is
specified by Rt. When several agents are exploring the feasible space, a high value
for this parameter makes sure that grenades are spread quite uniformly in the
feasible space and the whole space is being explored. While a low value for this
parameter lets the grenades get closer to search the local region all together, a
higher value for the explosion range makes it possible to explore farther regions
(better exploration), while a lower one lets the grenades focus on the region nearby
(better exploitation). The value of exponent p determines the intensity of explo-
ration. This parameter is updated based on the value of Tw:

P ¼ max 1=n; log Rt=Leð Þ=log Twð Þf g ð2:24Þ

where Tw is the probability that a produced piece of shrapnel collides an object in
an n-dimension hyper-box which circumscribes the grenade’s territory.

To increase the global search ability, a high value for Rt should be chosen at the
beginning (Rt-initial) and reduced gradually to let the grenades search the probable
global minimum location found altogether for a precise answer. A simple method
to reduce Rt is given by Eq. 2.25.

Rt ¼ Rt�initial= Riteration number=total iterations
rd

� �
ð2:25Þ

The value of Rrd is set before the algorithm starts. This parameter represents the
ratio of the value of Rt in the first iteration to its value in the final iteration.
Furthermore, Le is reduced according to the following equation:
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Le ¼ Le initialð Þm Rtð Þ1�m; 0�m� 1 ð2:26Þ

which indicates that Le is reduced more slowly than Rt during the iterations in
order to save the global search ability. m can be constant during the algorithm, or
reduced from a higher value to a lower one.

The next chapter presents the applications of many existing optimization
algorithms to the design optimization of mechanical elements.
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Chapter 3
Mechanical Design Optimization Using
the Existing Optimization Techniques

In this chapter, an effort is made to verify if any improvement in the solution is
possible by employing advanced optimization techniques to some of the mechanical
element design optimization problems available in the research literature. Seven
different mechanical element design problems, like optimization of a gear train,
radial ball bearing, Belleville spring, multi-plate disc clutch brake, robot gripper,
hydrostatic thrust bearing and four stage gear train, are considered in this chapter for
the analysis. The considered problems were solved by using either GA or PSO or by
both the methods by the other researchers. These problems are tested by using other
advanced optimization techniques such as ABC, DE, BBO and AIA in this book.
PSO is applied to the problems to which only GA was applied. The descriptions of
different mechanical elements considered in this work are given in the next section.

3.1 Description of Different Mechanical Design
Optimization Problems

3.1.1 Example 1: Optimization of a Gear Train

This problem is taken from Yokota et al. [1]. The single stage spur gear considered
by Yokota et al. [1] is shown in Fig. 3.1 with all its geometries. The optimal gear
design problem defined by Yokota et al. [1] consists of a nonlinear objective
function with five nonlinear constraints involving five design variables. Design
variable considered are width of the pinion and gear (b), shaft diameter of pinion
and gear (d1, d2), number of teeth on pinion (Z1) and module of pinion and gear
(m). The design variables with their ranges, objective function and the constraints
are given below:

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-2748-2_3, � Springer-Verlag London 2012
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• Design variables: X = (b, d1, d2, Z1, m), where, 20 B b B 32, 10 B d1 B 30,
30 B d2 B 40, 18 B Z1 B 25 and m = (2.75, 3, 3.5, 4)

• Objective function to be minimized:

Weight ¼ F xð Þ

¼ pq=4;000ð Þ bm2Z2
1 1þa2
� �

� D2
i �d2

0

� �
l�bwð Þ�nd2

pbw� d2
1þd2

2

� �
b

h i

ð3:1Þ

where, q is the density of material, a is the gear ratio, Di is the inside diameter of
rim, do is the outside diameter of boss, l is the length of boss, bw is the thickness of
web, dp is the drill hole diameter, n is the number of holes, d1 and d2 is the
diameter of pinion and gear shaft, respectively.

• Constraints:

• For bending strength of tooth:

g1 xð Þ ¼ Fs� b1 ð3:2Þ

• For surface durability:

g2 xð Þ ¼ Fs=Fp

� �
� b2 ð3:3Þ

where, Fs is the bending strength of gear and Fp is the wear load.

Fig. 3.1 Single stage spur gear (from Yokota et al. [1] reprinted with permission from Elsevier)
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• For torsional strength of pinion shaft:

g3 xð Þ ¼ d3
1 � b3 ð3:4Þ

• For torsional strength of gear shaft:

g4 xð Þ ¼ d3
2 � b4 ð3:5Þ

• For the center distance:

g5 xð Þ ¼ 1þ að ÞmZ1=2� b5 ð3:6Þ

where, Dr = m(aZ1 - 2.5), lw = 2.5 m, Di = Dr - 2lw, bw = 3.5 m, d0 =

d2 ? 25, dp = 0.25(Di - d0), D1 = mZ1, D2 = amZ1, N2 = N1/a, Z2 = Z1D2/D1,
v = pD1N1/60,000, b1 = 1,000P/v, P is the power to be transmitted, v is the pitch
line velocity, b3 = 48.68e6P/(N1s), s is the shear strength of shaft, b4 = 48.68e6P/
(N2s), Fs = pKvKwrbmy, y is the tooth form factor, r is the allowable stress of
gear, Fp = 2KvKwD1bZ2/(Z1 ? Z2), Z2 is the number of teeth on gear, a = 4,
q = 8, P = 7.5, n = 6, r = 294.3, y = 0.102, b2 = 0.193, s = 19.62, Kw = 0.8,
Kv = 0.389.

Yokota et al. [1] solved this constrained optimization problem by considering
all the design variables as discrete. The model of Yokota et al. [1] is modified by
using American Gear Manufacturers Association (AGMA) standard Equations
[2, 3] which include many detailed design factors such as; Kv, which cannot be
constant as it depends on pitch line velocity which is again the function of pitch
diameters of pinion/gear; Form factor y, which depends on the number of teeth and
cannot be taken as constant. Moreover, in the above design considered by Yokota
et al. [1] there is no mention of hardness, which plays a very crucial role for the
surface fatigue strength. So design is modified considering many additional factors
which are practically required for the optimal gear design. Refined design includes
six design variables including hardness as an additional design variable and 8
constraints which are given below:

• Design variables: x = (b, d1, d2, Z1, m, H), where, 200 B H B 400
• Constraints:

• For the bending fatigue strength:

g1 xð Þ ¼ SnCsKrKmsbJm= KvKoKmð Þ� b1 ð3:7Þ

where, J is the Lewis gear geometry factor, Kv is the coefficient of pitch line
velocity, Ko is the coefficient of degree of non-uniformity, Km is the coefficient
of accuracy of gear alignment, Sn is the endurance limit, Kr is the reliability
factor, Kms is the mean stress factor, Cs is the surface factor.

• for the surface fatigue strength:

g2 xð Þ ¼ S2
feC2

l C2
r bD1I=ðC2

pKvKoKmÞ � b1 ð3:8Þ
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where, Sfe represents the reference value of surface strength for a specific
material with a level of 99% reliability at 107 cycles, Cl is the surface fatigue
life factor, Cr is the reliability adjustment factor, I is the geometry factor and
Cp is the elastic coefficient of material.

• For avoiding the interference:

g3 xð Þ ¼ sin2/D1 2D2 þ D1ð Þ= 4mð Þ � �D2 � 1� 0 ð3:9Þ

where, Ø is the pressure angle
• For uniform load distribution:

g4 xð Þ ¼ b=m� 8 ð3:10Þ

g5 xð Þ ¼ b=m� 16 ð3:11Þ

• For torsional strength of shafts:

g6 xð Þ ¼ d3
1 � b3 ð3:12Þ

g7 xð Þ ¼ d3
2 � b4 ð3:13Þ

• For center distance:

g8 xð Þ ¼ 1þ að ÞmZ1=2� b5 ð3:14Þ
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Fig. 3.2 Plot of third order polynomial fit for Lewis geometry factor (J)
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where, values of Cs and J are determined from Figs. 3.2 and 3.3, respectively,
Sn = 1.7236H, Kv = (78 ? H(196.85v))/78, Sfe = 2.8H-69, I = asinØcosØ/
(2(a ? 1)), Kr = 0.814, Kms = 1.4, Ko = 1, Km = 1.3, Cp = 191, Cl = 1, Cr = 1
and Ø = 25. The objective function is same as that given by Eq. 3.1.

The design proposed by Yokota et al. [1] will be referred to as Example 1A in
this book. The same design is attempted by using mixed discrete–continuous
design variables by considering b, d1 and d2 as continuous variables and Z1 and
m as the discrete variables. The design with mixed discrete–continuous design
variables will be referred to as Example 1B in this book. The modified design
according to AGMA with all the discrete design variables will be referred to as
Example 1C in this book and the modified design with mixed discrete–continuous
design variables will be referred to as Example 1D in this book.

3.1.2 Example 2: Optimization of a Radial Ball Bearing

Rolling element bearings appear to have a simple outer geometry, but their internal
geometry can have varying effects on the amount of stresses, deflections and load
distributions it can handle. Therefore, the internal geometry plays a vital role.
Deflection of the bearing accounts for the stiffness of the bearing, which also
depends on bearings internal geometry. The internal geometry has a direct effect
on the performance and the life of a bearing.

Figure 3.4 shows the geometries of a radial ball bearing. Generally bearing is
specified by three standardized boundary dimensions, namely, bore diameter (d),
the outer diameter (D) and the bearing width (Bw). Keeping these boundary
dimensions fixed, internal parameters can be altered to have the maximum per-
formance of the bearing. Internal parameters include ball diameter (Db), pitch
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diameter (Dm), inner and outer raceway curvature coefficients (fi and fo) and
number of balls (Z). The purpose of optimization is to evaluate the above men-
tioned internal geometry to maximize the performance of the bearing.

Gupta et al. [4] presented the optimization aspects of rolling element bearings
by using a non-dominated sorting genetic algorithm (NSGA-II). The design
parameters, objective functions and constraints for defining feasible design
parameter space considered by the authors are shown below.

• Design variables:

As discussed above, internal geometries are very important for the performance
of a bearing and all these parameters are to be considered as design variables.
There are many parameters such as KDmin, KDmax, e, e and f which only appear in
constraints and indirectly affect the internal geometry. These parameters were
considered constant by Changsen [5] but were taken as design variables with some
studied range by Gupta et al. [4]. So, a total of ten design variables are considered
for the optimization problem and these are:

X ¼ ½Dm; Db; Z; fi; fo; KDmin; KDmax; e; e; f�

All the design variables are continuous in nature, except Z (number of balls) which
varies as integer during the optimization process. Ranges of all these ten design
variables were given as: 0.5(D ? d) B Dm B 0.6(D ? d), 0.15(D - d) B Db B 0.45
(D - d), 4 B Z B 50, 0.515 B fi B 0.6, 0.515 B fo B 0.6, 0.4 BKDmin B 0.5,
0.6 B KDmax B 0.7, 0.3 B e B 0.4, 0.02 B e B 0.1, 0.6 B f B 0.85

where, e is the parameter for outer ring strength consideration, f is the bearing
width limiter, e is the parameter for mobility condition, KDmin is the minimum ball
diameter limiter and KDmax is the maximum ball diameter limiter.

Fig. 3.4 Radial ball bearing (from Gupta et al. [4] reprinted with permission from Elsevier)
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• Objective functions:

Three different objective functions were considered by Gupta et al. [4] which
deal with the performance of the bearing. These were maximization of dynamic
capacity, minimum film thickness and static capacity. All these objectives were
expressed in mathematical form as described in the following sub-sections.

• Dynamic Capacity (Cd)

Bearing is a rotating element and experiences continuous reversal of stresses
induced in balls and rings. These stresses affect the fatigue life of the bearing.
Dynamic capacity or dynamic load rating for the bearing is a direct measure of the
fatigue life. Dynamic capacity for the bearing for outer ring fixed and inner ring
rotating is expressed as:

Cd ¼ fcZ2=3D1:8
b If Db� 25:4 mm ð3:15Þ

and

Cd ¼ 3:647fcZ2=3D1:4
b If Db [ 25:4 mm ð3:16Þ

where,

fc ¼ 37:91 1þ 1:04
1� c
1þ c

� �1:72 fi 2fo � 1ð Þ
fo 2fi � 1ð Þ

� �0:41
( )10=3

2
4

3
5
�0:3

c ¼ Db cos a
Dm

; fi ¼
ri

Db
; fo ¼

ro

Db
ð3:17Þ

ro, ri is the outer and inner raceway groove curvature radius, respectively, a is the
radial contact angle

Deep groove ball bearing was considered by Gupta et al. [4] and hence the
value of a was taken as zero. The aim of optimization is the maximization of
dynamic capacity.

• Elastohydrodynamic minimum film thickness (Hmin)

Long wear life is also required for the bearing along with fatigue life. Minimum
film thickness is important to increase the wear life as it avoids the metal-to-metal
contact for the rotating bearing. Minimum film thickness was predicted by elas-
tohydrodynamic lubrication theory, which gives minimum film thickness as:

Hmin;ring ¼ 3:63a1R0:466
x;ring E�0:117

o Q�0:073 pniDmgo 1� c2ð Þ
120

� �0:68

� 1� exp �0:703
Ry;ring

Rx;ring

� �0:636
( )" #

ð3:18Þ
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Here i represents the number of rows and it was considered as 1 for single row
deep groove rolling bearing. Other expressions in the objective function are given
below.

Q ¼ 5Fr

iZ cos a
ð3:19Þ

Rx;inner ¼
Db

2 1� cð Þ ; Rx;outer ¼
Db

2 1þ cð Þ

Ry;inner ¼
fiDb

2fi � 1
; Ry;outer ¼

foDb

2fo � 1

The expression for Hmin is applicable for the inner and outer ring separately. So
for the optimization process the minimum of the two is maximized. So Hmin can be
expressed as:

Hmin ¼ min Hmin;inner;Hmin;outer

� �

The subscript ‘ring’ that appears in the objective function can take value as the
inner or outer ring. Operating conditions for the bearing given by Gupta et al. [4] are:

a1 = 1e - 8, go = 0.02, ni = 5000, Eo = 2.25e11, and Fr = 15000
where, Eo is the equivalent modulus of elasticity, Fr is the radial load, ni is the

rotational speed of inner ring, go is the dynamic viscosity at atmospheric pressure,
a1 is the pressure coefficient of viscosity.

• Static capacity (Cs)

Static capacity is the load which a bearing can sustain in the stationary position.
The static capacity is also defined for the inner and outer rings separately. It was
expressed as:

Cs;inner ¼
23:8ZiD2

b a�i b�i
� �3

cos a

4� 1
fi
þ 2c

1� c

� �2 ð3:20Þ

Cs;outer ¼
23:8ZiD2

b a�ob�o
� �3

cos a

4� 1
fo
� 2c

1þ c

� �2 ð3:21Þ

For the calculation of a* and b*, it is required to calculate F(q) separately for
inner and outer race as:
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F qð Þi¼

1
fi
þ 2c

1� c

4� 1
fi
þ 2c

1� c

� � ð3:22Þ

F qð Þo¼

1
fo
� 2c

1þ c

4� 1
fo
� 2c

1þ c

� � ð3:23Þ

The values of a* and b* can be taken from Harris [6] once the value of F(q) is
found.

• Constraints:

For the assembly of a bearing, assembly angle and the number of balls should
satisfy the following condition:

g1 Xð Þ ¼ /o

2 sin�1 Db=Dmð Þ
� Z þ 1� 0 ð3:24Þ

In the above expression /o is the assembly angle expressed in radian and can be
formulated as:

/o¼2p�2cos�1
D�dð Þ=2�3 T=4ð Þf g2þ D=2� T=4ð Þ�Dbf g2� d=2þ T=4ð Þf g2

h i

2 D�dð Þ=2�3 T=4ð Þf g D=2� T=4ð Þ�Dbf g
ð3:25Þ

where,

T ¼ D� d � 2Db

Upper and lower bounds for the balls can be expressed by the following
constraints:

g2 Xð Þ ¼ 2Db � KD min D� dð Þ� 0 ð3:26Þ

g3 Xð Þ ¼ KD max D� dð Þ � 2Db� 0 ð3:27Þ

Additional constraint on the size of ball was decided by the width of the bearing
and thus it also formed a constraint as,

g4 Xð Þ ¼ fBw � Db� 0 ð3:28Þ

To ensure the running mobility of bearings, there should be difference between
the pitch diameter and the average diameter and also inner ring thickness must be
more than outer ring thickness, and these lead to the following two constraints.
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g5 Xð Þ ¼ Dm � 0:5 Dþ dð Þ� 0 ð3:29Þ

g6 Xð Þ ¼ 0:5þ eð Þ Dþ dð Þ � Dm� 0 ð3:30Þ

The thickness of a bearing ring at the outer raceway bottom should not be less
than eD, where e is a parameter obtained from the simple strength consideration of
the outer ring and thus leads to the following constraint:

g7 Xð Þ ¼ 0:5 D� Dm � Dbð Þ � eDb� 0 ð3:31Þ

The groove curvature radii of the inner and outer raceways of a bearing should
not be less than 0.515Db. These lead to the following two constraints.

g8 Xð Þ ¼ fi� 0:515 ð3:32Þ

g9 Xð Þ ¼ fo� 0:515 ð3:33Þ

Designers are always interested in the design where all the objectives are
maximized simultaneously because all the objective functions are of importance.
This concept leads to the multi-objective optimization design. In this book, weight
method is implemented to convert multi-objective functions into a single objective
function. A combined objective function F is formulated considering three
objective functions Cd, Hmin and Cs as

F ¼ w1 Cd=Cdmaxð Þ þ w2 Hmin=Hminmaxð Þ þ w3 Cs=Csmaxð Þ ð3:34Þ

where, w1, w2 and w3 are different weight factors and Cdmax, Hminmaxand Csmax are
the maximum values of the objective functions Cd, Hmin and Cs, respectively,
when these objectives are considered independently under the given constraints.
As all of the three objective functions are considered of equal importance for the
design of rolling element bearing, the weight factors are taken as 0.33333 each. In
this book optimization of dynamic capacity, static capacity and elastohydrody-
namic minimum film thickness will be referred to as Example 2A, Example 2B
and Example 2C, respectively.

3.1.3 Example 3: Optimization of a Belleville Spring

The objective is to design a Belleville spring having minimum weight and satis-
fying a number of constraints. The problem has 4 design variables: external
diameter of the spring (De(x3),) internal diameter of the spring (Di(x4),), thickness
of the spring (t(x1),) and the height (h(x2),) of the spring as shown in Fig. 3.5. Of
these design variables, t is a discrete variable and the rest are continuous variables.
Constraints are for compressive stress, deflection, height to deflection, height to
maximum height, outer diameter, inner diameter and slope.
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Minimize:

f ðxÞ ¼ 0:07075pðD2
e � D2

i Þt
ð3:35Þ

Subject to:

g1ðxÞ ¼ S� 4Edmax

ð1� l2ÞaD2
e

b h� dmax

2

� �
þ ct

� 	
� 0 ð3:36Þ

where, S is the allowable strength by the spring material, E is the modulus of
elasticity for the spring material, l is the Poisson’s ratio, dmax is the maximum
deflection of the spring

g2ðxÞ ¼
4Ed

ð1� l2ÞaD2
e

h� d
2

� �
ðh� dÞt þ t3

� 	� �

d¼ dmax

�Pmax� 0 ð3:37Þ

g3ðxÞ ¼ dl � dmax� 0 ð3:38Þ

g4ðxÞ ¼ H � h� t� 0 ð3:39Þ

where, Pmax is the maximum load acting on the spring, H is the overall height of
the spring.

g5ðxÞ ¼ Dmax � De� 0 ð3:40Þ

g6ðxÞ ¼ De � Di� 0 ð3:41Þ

g7ðxÞ ¼ 0:3� h

De � Di
� 0 ð3:42Þ

where,

a ¼ 6
p ln K

K � 1
K

� �2

; b ¼ 6
p ln K

K � 1
ln K

� 1

� �
; c ¼ 6

p ln K

K � 1
2

� �
;

Fig. 3.5 Belleville spring
(from [7] reprinted with
permission from Elsevier)
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Pmax ¼ 5400lb; dmax ¼ 0:2in; S ¼ 200kPsi; E ¼ 30e6psi; l ¼ 0:3;

H ¼ 2in; Dmax ¼ 12:01in;

K ¼ De

Di
; dl ¼ f ðaÞa; a ¼ h=t

0:01� x1� 0:6; 0:05� x2� 0:5; 5� x3; x4� 15:

Variation of f(a) with a is given in Table 3.1.

3.1.4 Example 4: Optimization of a Multiple Disc Clutch Brake

This problem is taken from Osyczka [8]. Figure 3.6 shows a multiple disc clutch
brake. The objective is to minimize the mass of the multiple disc clutch brake with
five discrete variables: inner radius(ri = 60, 61 ,62 …80), outer radius (ro = 90,
91, 92 …110), thickness of discs (t = 1, 1.5, 2,2.5, 3), actuating force (F = 600,
610, 620, …1,000) and number of friction surfaces(Z = 2, 3, 4, 5, 6, 7, 8, 9). The
problem can be stated as:

Minimize f ðxÞ ¼ pðr2
0 � r2

i ÞtðZ þ 1Þq

Subject to:

g1ðxÞ ¼ ro � ri � Dr� 0 ð3:43Þ

g2ðxÞ ¼ lmax � ðZ þ 1Þðt þ dÞ� 0 ð3:44Þ

g3ðxÞ ¼ pmax � prz� 0 ð3:45Þ

g4ðxÞ ¼ pmaxvsr max � przvsr � 0 ð3:46Þ

g5ðxÞ ¼ vsr max � vsr � 0 ð3:47Þ

g6ðxÞ ¼ Tmax � T � 0 ð3:48Þ

g7ðxÞ ¼ Mh � sMs� 0 ð3:49Þ

g8ðxÞ ¼ T � 0 ð3:50Þ

where,

Mh ¼
2
3
lFZ

r3
o � r3

i

r2
o � r2

i

; prz ¼
F

pðr2
o � r2

i Þ
; vsr ¼

2pnðr3
o � r3

i Þ
90ðr2

o � r2
i Þ
; T ¼ Izpn

30ðMh þMf Þ
;

Table 3.1 Variation of f(a) with a

a B1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 C2.8
f(a) 1 0.85 0.77 0.71 0.66 0.63 0.6 0.58 0.56 0.55 0.53 0.52 0.51 0.51 0.5
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minimum difference between radii (Dr) = 20 mm, maximum disc thickness
(tmax) = 3 mm, minimum disc thickness (tmin) = 1.5 mm, maximum length
(lmax) = 30 mm, maximum number of disc (Zmax) = 10, maximum velocity of
slip stick (vsrmax) = 10 m/s, coefficient of friction (l) = 0.5, distance between disc
when unloaded (d) = 1.5, static input torque (Ms) = 40 Nm, frictional resistance
torque (Mf) = 3 Nm, input speed (n) = 250 rpm, maximum allowable pressure on
disc (pmax) = 1 MPa, disc mass moment of inertia(Iz) = 55 kgmm2, maximum
stopping time (Tmax) = 15 s, maximum actuating force (Fmax) = 1,000 N,
minimum inner diameter (rimin) = 55 mm, maximum outer diameter
(romax) = 110 mm and density of material (q) = 0.0000078 kg/m3.

3.1.5 Example 5: Optimization of a Robot Gripper

The objective is to minimize the difference between maximum and minimum force
applied by the gripper for the range of gripper end displacements. There are seven
continuous design variables (a, b, c, e, f, l, d) as shown in Figs. 3.7 and 3.8. All the
design variables are associated with the geometric dimensions of the robot gripper.
There are six different geometric constraints associated with the robot gripper
problems. The problem is taken from Osyczka et al. [10] which is stated as:

Minimize f ðxÞ ¼ max
z

Fkðx; zÞ �min
z

Fkðx; zÞ ð3:51Þ

Subject to:

g1ðxÞ ¼ Ymin � yðx; ZmaxÞ� 0 ð3:52Þ

g2ðxÞ ¼ yðx; ZmaxÞ� 0 ð3:53Þ

g3ðxÞ ¼ yðx; 0Þ � Ymax� 0 ð3:54Þ

Fig. 3.6 Multiple disc clutch
brake (from Rao et al. [9]
reprinted with permission
from Elsevier)
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g4ðxÞ ¼ ðaþ bÞ2 � l2 � e2� 0 ð3:55Þ

g5ðxÞ ¼ ðl� ZmaxÞ2 þ ða� eÞ2 � b2� 0 ð3:56Þ

g6ðxÞ ¼ l� Zmax� 0 ð3:57Þ

Following parameters are derived from Fig. 3.8:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� zÞ2 þ e2

q
ð3:58Þ

Fig. 3.7 Robot gripper (from Rao et al. [9] reproduced with permission from Elsevier)

Fig. 3.8 Different geometries of robot gripper (from Rao et al. [9] reproduced with permission
from Elsevier)
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a ¼ arccos
a2 þ g2 � b2

2ag

� �
þ / ð3:59Þ

b ¼ arccos
b2 þ g2 � a2

2bg

� �
� / ð3:60Þ

/ ¼ arctan
e

l� z

� �
þ / ð3:61Þ

Fk ¼
Pb sinðaþ bÞ

2c cosðaÞ

� �
ð3:62Þ

yðx; zÞ ¼ 2ðeþ f þ c sinðbþ dÞÞ ð3:63Þ

where, Ymin = 50, Ymax = 100, Zmax = 100, P = 100, 10 B a,b,f B 150, 100 B c
B 200, 0 B e B 50, 100 B l B 300, 1 B d B 3.14

3.1.6 Example 6: Optimization of a Hydrodynamic Thrust Bearing

The objective is to minimize the power loss in a hydrostatic thrust bearing. There
are four design variables bearing step radius (R), recess radius (Ro), oil viscosity
(l) and flow rate (Q). Figure 3.9 shows a hydrodynamic thrust bearing. Seven
different constraints are associated with the problem based on load carrying
capacity, inlet oil pressure, oil temperature rise, oil film thickness and physical
constraints. The problem can be stated as:

Fig. 3.9 Hydrodynamic
thrust bearing (from [7]
reprinted with permission
from Elsevier)
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Minimize : f ðxÞ ¼ QPo

0:7
þ Ef ð3:64Þ

where, Po is the inlet pressure and Ef is the power loss due to friction

Subject to:

g1ðxÞ ¼ W �Ws� 0 ð3:65Þ

where, Ws is the load acting on the bearing and W is the load carrying capacity of
the oil.

g2ðxÞ ¼ Pmax � Po� 0 ð3:66Þ

where, Pmax is the maximum allowable pressure.

g3ðxÞ ¼ DTmax � DT � 0 ð3:67Þ

where, DTmax is the maximum allowable temperature difference and DT is the rise
in temperature.

g4ðxÞ ¼ h� hmin� 0 ð3:68Þ

where, h-oil film thickness and hmin-minimum required oil film.

g5ðxÞ ¼ R� Ro� 0

g6ðxÞ ¼ 0:001� c
gPo

Q

2pRh

� �
� 0 ð3:69Þ

g7ðxÞ ¼ 5; 000� W

pðR2 � R2
oÞ
� 0 ð3:70Þ

where,

W ¼ pPo

2
R2 � R2

o

ln R
Ro

Po ¼
6lQ

ph3
ln

R

Ro

Ef ¼ 9; 336 QcCDT

DT ¼ 2ð10P � 560Þ

P ¼ log10 log10ð8:122e6lþ 0:8Þ � C1

n

h ¼ 2pN

60

� �22pl
Ef

R4

4
� R4

o

4

� �
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c = 0.0307, C = 0.5, n = -3.55, C1 = 10.04, Ws = 101,000, Pmax = 1,000,
DTmax = 50, hmin = 0.001, g = 386.4, N = 750, c is the density of oil, C is the
specific heat of oil, C1 and n is the constant for the given oil, 1 B R, Ro,Q B 16,
1e - 6 B l B 16e - 6.

3.1.7 Example 7: Discrete Optimization of a Four Stage Gear
Train

The four stage gear train design problem considered in this study was originally
introduced by Pomrehn and Papalambros [11]. A gear train is to be designed by
using eight spur gears arranged into four-stages. The gear train has to allow an
input power of 55.9 W at 5000 rpm and the output speed of the system must be
250 ± 5 rpm in the same rotational direction as the input. Power loss through the
gear train can be assumed negligible. The gearbox housing provides discrete
locations for the gear/pinion shafts and also four gear blank thicknesses are
available.

The objective is to minimize the total weight of the given gear train. With the
material specified (aluminum–bronze), the objective is minimizing the total gear
volume. The problem can be stated as:

Minimize

f ¼ p
X4

i¼1

bic2
i ðN2

pi þ N2
giÞ

ðNpi þ NgiÞ2
ð3:71Þ

where, bi is the pinion and gear thickness, ci is the distance between pinion and
gear center, Ngi is the number of teeth on gear, Npi is the number of teeth on pinion,
i is the gear stage index and its values are 1, 2, 3, 4

Subject to:

• Gear-Tooth Bending Fatigue Strength Constraints:

g1 ¼
366; 000

px1
þ 2c1Np1

Np1 þ Ng1
� �

" #
Np1 þ Ng1
� �2

4b1c2
1Np1

" #
� rNJR

0:0167WKoKm
ð3:72Þ

g2 ¼
366; 000Ng1

px1Np1
þ 2c2Np2

Np2 þ Ng2
� �

" #
Np2 þ Ng2
� �2

4b2c2
2Np2

" #
� rNJR

0:0167WKoKm
ð3:73Þ

g3 ¼
366; 000Ng1Ng2

px1Np1Np2
þ 2c3Np3

Np3 þ Ng3
� �

" #
Np3 þ Ng3
� �2

4b3c2
3Np3

" #
� rNJR

0:0167WKoKm
ð3:74Þ
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g4 ¼
366; 000Ng1Ng2Ng3

px1Np1Np2Np3
þ 2c4Np4

Np4 þ Ng4
� �

" #
Np4 þ Ng4
� �2

4b4c2
4Np4

" #
� rNJR

0:0167WKoKm

ð3:75Þ

where, W is the Input power, JR is the Geometry factor, KM is the Mounting factor,
Ko is the Overload factor, rN is the allowable bending stress, x1 is the Input speed,
• Gear-Tooth Contact Strength Constraints:

g5 ¼
366; 000

px1
þ 2c1Np1

Np1 þ Ng1

� �
" #

Np1 þ Ng1
� �3

4b1c2
1Ng1N2

p1

" #
� rH

Cp

� �2
sin / cos /

0:0334WKoKm

� �

ð3:76Þ

g6¼
366;000Ng1

px1Np1
þ 2c2Np2

Np2þNg2
� �

" #
Np2þNg2
� �3

4b2c2
2Ng2N2

p2

" #
� rH

Cp

� �2
sin/cos/

0:0334WKoKm

� �

ð3:77Þ

g7 ¼
366; 000Ng1Ng2

px1Np1Np2
þ 2c3Np3

Np3 þ Ng3
� �

" #
Np3 þ Ng3
� �3

4b3c2
3Ng3N2

p3

" #

� rH

Cp

� �2
sin / cos /

0:0334WKoKm

� �
ð3:78Þ

g8 ¼
366; 000Ng1Ng2Ng3

px1Np1Np2Np3
þ 2c4Np4

Np4 þ Ng4
� �

" #
Np4 þ Ng4
� �3

4b4c2
4Ng4N2

p4

" #

� rH

Cp

� �2
sin / cos /

0:0334WKoKm

� �
ð3:79Þ

where, rH is the allowable fatigue stress and Cp is the elastic coefficient.
• Gear-Tooth Contact Ratio Constraints:

g9�12 ¼ Npi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 /

4
þ 1

Npi
þ 1

Npi

� �2
s

þ Ngi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 /

4
þ 1

Ngi
þ 1

Ngi

� �2
s

� sin /ðNpi þ NgiÞ
2

�CRminp cos / ð3:80Þ

where, ø is the pressure angle and CRmin is the allowable contact ratio.
• Minimum Pinion Size Constraints:
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g13�16 ¼ dmin�
2ciNpi

Npi þ Ngi
ð3:81Þ

• Minimum Gear Size Constraints:

g17�20 ¼ dmin�
2ciNgi

Npi þ Ngi
ð3:82Þ

• Gear Housing Constraints for Pinions:

g21 ¼ xp1 þ
ðNp1 þ 2Þc1

Np1 þ Ng1
� Lmax ð3:83Þ

g22�24 ¼ xgði�1Þ þ
ðNpi þ 2Þci

Npi þ Ngi

� �

i¼2;3;4

� Lmax ð3:84Þ

g25 ¼ �xp1 þ
ðNp1 þ 2Þc1

Np1 þ Ng1
� 0 ð3:85Þ

g26�28 ¼ �xgði�1Þ þ
ðNpi þ 2Þci

Npi þ Ngi

� �

i¼ 2;3;4

� 0 ð3:86Þ

g29 ¼ yp1 þ
ðNp1 þ 2Þc1

Np1 þ Ng1
� Lmax ð3:87Þ

g30�32 ¼ ygði�1Þ þ
ðNpi þ 2Þci

Npi þ Ngi

� �

i ¼ 2;3;4

� Lmax ð3:88Þ

g33 ¼ �yp1 þ
ðNp1 þ 2Þc1

Np1 þ Ng1
� 0 ð3:89Þ

g34�36 ¼ �ygði�1Þ þ
ðNpi þ 2Þci

Npi þ Ngi

� �

i¼ 2;3;4

� 0 ð3:90Þ
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where, xgi is the x-coordinate of gear shaft, xpi is the x-coordinate of pinion shaft,
ygi is the y-coordinate of gear shaft, ypi is the y-coordinate of pinion shaft.
• Gear Housing Constraints for Gears:

g37�40 ¼ xgi þ
ðNgi þ 2Þci

Npi þ Ngi
� Lmax ð3:91Þ

g41�44 ¼ �xgi þ
ðNgi þ 2Þci

Npi þ Ngi
� 0 ð3:92Þ

g45�48 ¼ ygi þ
ðNgi þ 2Þci

Npi þ Ngi
� Lmax ð3:93Þ

g49�52 ¼ �ygi þ
ðNgi þ 2Þci

Npi þ Ngi
� 0 ð3:94Þ

• Gear Pitch Constraints:

g53�56 ¼ ð0:945ci � Npi � NgiÞðbi � 5:715Þðbi � 8:255Þðbi � 12:70Þð�1Þ� 0

ð3:95Þ

g57�60 ¼ ð0:646ci � Npi � NgiÞðbi � 3:175Þðbi � 8:255Þðbi � 12:70Þðþ1Þ� 0

ð3:96Þ

g61�64 ¼ ð0:504ci � Npi � NgiÞðbi � 3:175Þðbi � 5:715Þðbi � 12:70Þð�1Þ� 0

ð3:97Þ

g65�68 ¼ ð0:0ci � Npi � NgiÞðbi � 3:175Þðbi � 5:715Þðbi � 8:255Þðþ1Þ� 0

ð3:98Þ

g69�72 ¼ ðNpi þ Ngi � 1:812ciÞðbi � 5:715Þðbi � 8:255Þðbi � 12:70Þð�1Þ� 0

ð3:99Þ

54 3 Mechanical Design Optimization Using the Existing Optimization



www.manaraa.com

g73�76 ¼ ðNpi þ Ngi � 0:945ciÞðbi � 3:175Þðbi � 8:255Þðbi � 12:70Þðþ1Þ� 0

ð3:100Þ

g77�80 ¼ ðNpi þ Ngi � 0:646ciÞðbi � 3:175Þðbi � 5:715Þðbi � 12:70Þð�1Þ� 0

ð3:101Þ

g81�84 ¼ ðNpi þ Ngi � 0:504ciÞðbi � 3:175Þðbi � 5:715Þðbi � 8:255Þðþ1Þ� 0

ð3:102Þ

• Kinematic Constraints:

g85 ¼ xmin�x1
Np1Np2Np3Np4

Ng1Ng2Ng3Ng4
ð3:103Þ

g86 ¼ x1
Np1Np2Np3Np4

Ng1Ng2Ng3Ng4
�xmax ð3:104Þ

where,

xp1; yp1; xgi; ygi 2 12:7; 25:4; 38:1; 50:8; 63:5; 76:2; 88:9; 101:6; 114:3ð Þ;

bi 2 3:175; 5:715; 8:255; 12:7ð Þ

Npi;Ngi 2 ð7; 8; 9. . .. . .. . .76Þ; ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xgi � xpi

� �2þ ygi � ypi

� �2
q

;

CRmin = 1.4, dmin = 25.4 mm, ø = 20o, W = 55.9 W, JR = 0.2, KM = 1.6,
K0 = 1.5, maximum housing dimension (Lmax) = 127 mm, rH = 3,290 kgf/cm2,
rN = 2,090 kgf/cm2, x1 = 5,000 rpm, minimum output speed (xmin) = 245 rpm,
maximum output speed (xmax) = 255 rpm, Cp = 464.

3.2 Applications of Advanced Optimization Techniques to
Different Design Optimization Problems of Mechanical
Elements

3.2.1 Example 1: Optimization of Gear Train

This example is taken from Yokota et al. [1]. It was solved by Yokota et al. [1] by
using improved Genetic Algorithm by considering population size = 20 and
number of generation = 1,000 resulting in 20,000 function evaluations.
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The crossover probability and mutation probability was taken as 0.4 and 0.1,
respectively. The best value reported by Yokota et al. [1] is f(X) = 3512.6 with
b = 24, d1 = 30, d2 = 30, z1 = 18, m = 2.75. In this book the same problem is
attempted by using PSO, ABC, BBO, DE and AIA. Following parameters are
taken for the analysis:

• Population size = 20
• Number of generations = 100
• For PSO: w varies linealy from 0.9 to 0.4, c1 = 2, c2 = 2, Vmax = 4
• For ABC: number of employed bees = number of onlooker bees = Population

size/2, limit = number of generations.
• For DE: F = 0.5, C = 0.5
• For BBO: Immigration rate = emigration rate = 1, mutation factor = 0.01,
• For AIA: Clone size = population size, b = 1, repertoire rate = 0.25

Results obtained by different algorithms for different cases are given in
Table 3.2. Moreover, values for the objective function, design variables and
constraints for all the cases are given in Table 3.3.

It is observed from Table 3.2 that application of PSO, ABC, BBO, DE and AIA
for the weight optimization of gear train has produced better results than the results
reported by Yokota et al. [1]. Solutions obtained by using ABC, PSO, DE, BBO
and AIA have resulted in 10.53% reduction in weight than that of reported by
Yokota et al. [1] by using 90% less function evaluations. All the considered
algorithms have produced similar best solutions.

The same problem presented by Yokota et al. [1] is solved by considering the
mixed continuous-discrete design variables. Value of Z1 and m are considered as
discrete and rest of the design variables are considered as continuous. It is
observed from the results that by considering mixed continuous-discrete design
variables, ABC and DE have produced better results than the rest of the algo-
rithms. Results obtained by using PSO is near to the results obtained by using ABC
and DE, but results of BBO and AIA is inferior to the results of ABC and DE.

Table 3.2 Comparison of results for Example 1

Optimization method A* B* C* D* FE

IGA [1] 3,512.6 – – – 20,000
PSO 3,142.712756 3,135.535546 2,994.844118 2,993.674547 2,000
ABC 3,142.712756 3,135.515852 2,994.844118 2,993.665605 2,000
BBO 3,142.712756 3,136.1597 2,994.844118 2,995.0367 2,000
DE 3,142.712756 3,135.515852 2,994.844118 2,993.6657 2,000
AIA 3,142.712756 3,136.106724 2,994.844118 2,994.160357 2,000

A* Design considered by Yokota et al. [1] with discrete design variables (Example 1A)
B* Design considered by Yokota et al. [1] with mixed continuous-discrete design variables
(Example 1B)
C* Modified design with discrete design variables (Example 1C)
D* Modified design with mixed continuous-discrete design variables (Example 1D), FE-Function
evaluations, IGA Improved GA
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The consideration of mixed continuous-discrete design variables have resulted in
0.2% reduction in weight than that of considering discrete design variables.

For the modified design also, all the considered algorithms have produced
similar best solutions for the discrete design variables. The same modified design
is solved by considering mixed continuous-discrete design variables. It is observed
from the results that for the modified design ABC have outperformed PSO, DE,
BBO and AIA. The results of PSO and DE are near to the results of ABC, but
results of BBO and AIA is inferior to the results of ABC, DE and PSO. Modifi-
cations in the design have produced 14.73% reduction in weight than the design
considered by Yokota et al. [1] by using GA. Moreover, application of advanced
optimization techniques has produced 4.7% reduction in weight than improved GA
for the design of Yokota et al. [1]. Considerations of mixed continuous-discrete
design variables have produced 0.04% reduction in weight.

3.2.2 Example 2: Optimization of Radial Ball Bearing

The problem for rolling element bearing was presented by Gupta et al. [4]. The
best reported function value by Gupta et al. [4] for the dynamic capacity and static
capacity are 6,029.54 and 3,672.966, respectively with design variables

Table 3.3 Values of objective function, constraints and design variables for Example 2

A* B* C* D*
Design variables

x1 24 23.9192958690 22 22.000000000
x2 30 30.0000000000 30 30.0000000000
x3 37 36.7664865516 37 36.7474482862
x4 18 18.0000000000 18 18.0000000000
x5 – – 337 391.6830127930

Constraints

g1(X) 0.0034 0.0000000001 2.0156251441 2.2793804992
g2(X) 0.7295 0.7294527202 0.0297001031 0.4217886196
g3(X) 1.1730 1.1730382294 0.7993003505 0.7993003505
g4(X) 0.0192 0.0000000040 0.0000000000 0.0000000000
g5(X) 0.6162 0.6161616162 6.0000000000 6.0000000000
g6(X) – – 1.1764174199 1.1764174199
g7(X) – – 0.0207599219 0.0000000001
g8(X) – – 0.6161616162 0.6161616162

Objective function

f(X) 3,142.712756 3,135.515852 2,994.844118 2,993.665605

A* Design considered by Yokota et al. [1] with discrete design variables (Example 1A)
B* Design considered by Yokota et al. [1].with mixed continuous-discrete design variables
(Example 1B)
C* Modified design with discrete design variables (Example 1C)
D* Modified design with mixed continuous-discrete design variables (Example 1D)

3.2 Applications of Advanced Optimization Techniques 57



www.manaraa.com

X = (20.05977, 6.2111, 7, 0.51499, 0.51504, 0.4298, 0.6342, 0.300063, 0.0345,
0.7143), and for the elastohydrodynamic minimum film thickness is 0.2193 with
design variables X = (22.546, 4.6579, 9, 0.51499, 0.5167, 0.4068, 0.6275,
0.300024, 0.0794, 0.6386). Multi-objective optimization was also carried out by
considering all the objective functions simultaneously using NSGA-II. The values
reported by Gupta et al. [4] for multi-objective optimization are X = (20.702,
5.81, 7 0.5149, 0.5159, 0.4046, 0.6057, 0.300011, 0.057, 0.693) which give
dynamic capacity, static capacity and elastohydodynamic minimum film thickness
as 5,511.5, 3,401.91 and 0.2096, respectively. This problem was solved by using
NSGA-II by Gupta et al. [4] by considering population size of 4,500 and maximum
number of generations of 50, resulting in 225,000 function evaluations. Now the
same problem is attempted in this book by using PSO, ABC, BBO, DE and AIA.
Following parameters are taken for the analysis:

• Population size = 50
• Number of generations = 200

All other algorithm parameters for ABC, PSO, BBO, DE and AIA are kept
same as in Example 1. Results for the best solutions obtained by different algo-
rithms by considering all the objective function separately are given in Table 3.4.
Moreover, values for the objective function, design variables and constraints by
considering single and multi-objective optimization are given in Table 3.5.

It is observed from Table 3.4 that the applications of PSO, ABC and DE have
produced better results than the results reported by Gupta et al. [4] for the opti-
mization of dynamic capacity, static capacity and elastohydrodynamic minimum
film thickness. Results obtained by using BBO and AIA are inferior to the results
of other optimization methods. Moreover, results of ABC are better than that of
PSO and DE. Application of ABC has produced 0.046, 3.25 and 2.13% better
results for the optimization of dynamic capacity, static capacity and elastohy-
drodynamic minimum film thickness if all the objective functions are considered
separately. For the multi-objective optimization application of ABC has produced
9.45, 11.48 and 2.5% better results than NSGA-II for the dynamic capacity, static
capacity and elastohydodynamic minimum film thickness, respectively. Moreover,

Table 3.4 Comparison of results for Example 2

Optimization method A* B* C* FE

NSGA-II [4] 6,029.54 3,672.966 0.2193 225,000
PSO 6,032.249216 3,792.419941 0.223973 10,000
ABC 6,032.315099 3,792.420036 0.223974 10,000
BBO 5,790.02657 3,665.5299 0.22369 10,000
DE 6,032.314158 3,792.4186 0.22397 10,000
AIA 5,728.578202 3,632.841191 0.223503 10,000

A* optimization of dynamic capacity
B* optimization of static capacity
C* optimization of elastohydrodynamic minimum film thickness, FE Function evaluations
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optimization by using ABC requires 95.5% less function evaluations than NSGA-
II for the optimization of radial ball bearing.

3.2.3 Example 3: Optimization of Belleville Spring

The design problem of Belleville spring was attempted by Coello [7] by using a
new constraint handling technique (NCHT) and Deb and Goyal [12] by using
GeneAS. The best function value reported by Coello [7] is 2.121964 with design
variables as X = (0.208, 0.2, 8.751, 11.067) by considering population size = 160
and number of generations = 150 resulting in 24,000 function evaluations. Now
the same problem is attempted in this book by using PSO, ABC, BBO, DE and
AIA. Following parameters are taken for the analysis:

Table 3.5 Values of objective function, constraints and design variables for Example 2

A* B* C* D*
Design variables

x1 6.2129710190 6.2129710190 4.7531163709 6.2129710186
x2 20.0592463694 20.0592463695 22.3950136213 20.0592463700
x3 7.0000000000 7.0000000000 7.0000000000 7.0000000000
x4 0.5150000000 0.5150000000 0.5822163979 0.5150000000
x5 0.5150000000 0.5366358675 0.5150000001 0.5150000000
x6 0.4632363940 0.4467854117 0.4000000000 0.4000000000
x7 0.6350400888 0.6933689170 0.7000000000 0.6921816040
x8 0.3000000000 0.3000000000 0.3000000025 0.3000000000
x9 0.0359216980 0.0690762845 0.0701615425 0.0582934447
x10 0.8487454906 0.7964001636 0.7000000000 0.8031896022

Constraints

g1(X) 0.0000000000 0.0000000000 0.0000068524 0.0000000004
g2(X) 3.1612141580 3.4902338040 1.5062327418 4.4259420372
g3(X) 0.2748597380 1.4414363020 4.4937672582 1.4176900428
g4(X) 1.4257383964 0.9546304534 1.5468836291 1.0157354012
g5(X) 0.0592463694 0.0592463695 2.3950136213 0.0592463700
g6(X) 1.3776215506 2.7038050105 0.4114480787 2.2724914180
g7(X) 0.0000000001 0.0000000001 0.0000000807 0.0000000001
g8(X) 0.0000000000 0.0000000000 0.0672163979 0.0000000000
g9(X) 0.0000000000 0.0216358675 0.0000000001 0.0000000000

Objective function

f(X) 6,032.315099 3,792.420036 0.223974 Cd = 6032.315098
Cs = 3792.420036
Hmin = 0.214859

A* optimization of dynamic capacity
B* optimization of static capacity
C* optimization of elastohydrodynamic minimum film thickness
D* multi-objective optimization
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• Population size = 50
• Number of generations = 300

All other algorithm parameters for ABC, PSO, BBO, DE and AIA are kept
same as in Example 1. Results for the best solutions obtained by different algo-
rithms are given in Table 3.6. Moreover, values for the objective function, design
variables and constraints are given in Table 3.7.

It is observed from Table 3.6 that the applications of ABC, BBO, DE and AIA to
the Belleville spring design problem have produced better results than that reported
by Coello [7]. PSO has produced nearly the same results as that reported by Coello
[7]. Result produced by DE is better than all the results produced by other algo-
rithms. Results obtained by using DE have shown 6.48% weight reduction than that
given by Coello [7] by requiring 37.5% less function evaluations.

3.2.4 Example 4: Optimization of Multiple Disc Clutch Brake

The problem for multiple clutch brake was also attempted by Deb and Srinivasan
[13] by using NSGA-II. The value of minimum mass reported by Deb and
Srinivasan [13] is 0.4704 kg with ri = 70 mm, ro = 90 mm, t = 1.5 mm,
F = 1,000 N and Z = 3. Now the same problem is attempted in this book by using
PSO, ABC, BBO, DE and AIA. Following parameters are taken for the analysis:

• Population size = 20
• Number of generations = 30

All other algorithm parameters for ABC, PSO, BBO, DE and AIA are kept same as
in Example 1. Results for the best solutions obtained by different algorithms are
given in Table 3.8. Moreover, values for the objective function, design variables
and constraints are given in Table 3.9.

It is observed from Table 3.8 that the applications of PSO, ABC, BBO, DE and
AIA to the multiplate clutch disc brake design problem have produced better
results than that reported by Deb and Srinivasan [13]. All the algorithms have
produced similar results except AIA. Application of advanced optimization
techniques have shown 23% weight reduction than that given in Deb and
Srinivasan [13].

Table 3.6 Comparison of results for Example 3

Optimization method Function value Function evaluations

NCHT [7] 2.121964 24,000
PSO 2.12232 15,000
ABC 1.987799 15,000
BBO 2.119003 15,000
DE 1.984374 15,000
AIA 2.108494 15,000
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3.2.5 Example 5: Optimization of a Robotic Gripper

Robot gripper problem was attempted by Osyczka et al. [10] by using GA with
population size of 400 and number of generations as 400 i.e. requiring 160,000
function evaluations. The value of the objective function reported by Osyczka
et al. [10] is f(X) = 5.02 N with a = 150, b = 131.1, c = 196.5, e = 12.94,
f = 133.80, l = 175 and d = 2.60. Now the same problem is attempted in this
book by using PSO, ABC, BBO, DE and AIA. Following parameters are taken for
the analysis:

• Population size = 50
• Number of generations = 500

All other algorithm parameters for ABC, PSO, BBO, DE and AIA are kept
same as in Example 1. Results for the best solutions obtained by different algo-
rithms are given in Table 3.10. Moreover, values for the objective function, design
variables and constraints are given in Table 3.11. It is observed from the results

Table 3.7 Values of objective function, constraints and design variables for Example 3

Design variables

x1 0.204262
x2 0.200021
x3 10.003783
x4 11.990978

Objective function

f(X) 1.984374

Constraints

g1(X) 159.9270601084
g2(X) 0.1924019464
g3(X) 0.0000210000
g4(X) 1.5957170000
g5(X) 0.0190220000
g6(X) 1.9871950000
g7(X) 0.1993450567

Table 3.8 Comparison of results for Example 4

Optimization method Function value

NSGA-II [13] 0.4074
PSO 0.313657
ABC 0.313657
BBO 0.313657
DE 0.313657
AIA 0.321498
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that applications of PSO, ABC and BBO to the robot gripper design problem have
produced better results than that reported by Osyczka et al. [10]. DE fails to find
the feasible solution and AIA has shown inferior results than that reported by
Osyczka et al. [10]. Application of ABC has shown 15.3% improvement in the
result than that given in Osyczka et al. [10].

3.2.6 Example 6: Optimization of a Hydrostatic Thrust Bearing

The problem for hydrostatic bearing was attempted by He et al. [14] by using
improved PSO, by Coello [7] by using new constrained handling techniques and
by Deb and Goyal [12] by using GeneAS. The best reported results are by He et al.
[14] with the function value of 1,632.2149 and Ro = 5.956868685, Ri =

5.389175395, l = 5.40213310 and Q = 2.30154678 by using 90,000 function
evaluations. Now the same problem is attempted in this book by using ABC, BBO,
DE and AIA. Following parameters are taken for the analysis:

• Population size = 50
• Number of generations = 1,500

All other algorithm parameters for ABC, BBO, DE and AIA are kept same as in
Example 1. Results for the best solutions obtained by different algorithms are
given in Table 3.12. Moreover, values for the objective function, design variables
and constraints are given in Table 3.13.

Table 3.9 Values of objective function, constraints and design variables for Example 4

Design variable

x1 70
x2 90
x3 1
x4 860
x5 3

Objective function

f(X) 0.313657

Constraints

g1(X) 0.0000000000
g2(X) 24.0000000000
g3(X) 0.9144542181
g4(X) 9,819.9001736111
g5(X) 7,894.6965897818
g6(X) 1.5099273180
g7(X) 3,737.5000000000
g8(X) 13.4900726820
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It is observed from Table 3.12 that the applications of DE to the hydrostatic
thrust bearing design has produced good results than that reported by He et al. [14].
All other algorithms fail to find better results than DE by considering 75,000
function evaluations. Application of DE has shown 0.37% improvement in the
result than that given in He et al. [14].

3.2.7 Example 7: Discrete Optimization of a Four Stage
Gear Train

Example 7 is taken from Pomrehn and Papalambros [11]. This problem was also
solved by Khorshid and Seireg [15]. The best reported results are by Khorshid and
Seireg [15] with the function value f(X) = 38.13 and design variables X = (20, 23,

Table 3.10 Comparison of results for Example 5

Optimization method Objective function value Function evaluations

GA [10] 5.02 160,000
PSO 4.496555 25,000
ABC 4.2476 25,000
BBO 4.6753 25,000
DE – 25,000
AIA 5.3421 2,500

Table 3.11 Values of objective function, constraints and design variables for Example 5

Design variables

x1 150
x2 150
x3 200
x4 0
x5 150
x6 100
x7 2.339539113
– –

Constraints

g1(X) 28.0928485273
g2(X) 21.9071514727
g3(X) 33.6495870810
g4(X) 79,999.9999999800
g5(X) 0.0000000000
g6(X) 0.0000000001

Objective function

f(X) 4.2476436
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13, 13 44, 48, 26,28, 12.7 9 {7, 4, 7, 4, 3, 5, 7, 6, 6, 3}, 3.175, 3.175, 3.175, 3.175,
3.175). Now the same problem is attempted in this book by using PSO, ABC,
BBO, DE and AIA. Following parameters are taken for the analysis:

• Population size = 100
• Number of generations = 1,000

All other algorithm parameters for ABC, PSO, BBO, DE and AIA are kept
same as in Example 1. For this example all the algorithms are slightly changed to
handle discrete design variables by rounding the continuous value to its nearer
integer.

It is observed from Table 3.14 that only BBO is successful in giving feasible
solution. All other algorithms fail to find the feasible solution by using 100,000
function evaluations. Application of BBO has shown 4.1% reduction in volume of
a four stage gear box than that given by Khorshid and Seireg [15].

The next chapter presents the applications of modified PSO, modified ABC and
modified HEA to the unconstrained and constrained benchmark functions and also
to the design optimization problems of few mechanical elements.

Table 3.12 Comparison of results for Example 6

Optimization method Objective function value Function evaluations

PSO (He et al. [14]) 1,632.215 90,000
ABC 1,721.136 75,000
BBO 2,248.463 75,000
DE 1,626.164 75,000
AIA 2,476.342 75,000

Table 3.13 Values of objective function, constraints and design variables for Example 6

Design variables

x1 5.9579210698323877
x2 5.3908549781783925
x3 0.0000053591093191116251
x4 2.2722386008326123
Objective function

f(X) 1626.96165

Constraints

g1(X) 13.8754180063
g2(X) 0.5641388623
g3(X) 0.0065630723
g4(X) 0.0003252256
g5(X) 0.5670660917
g6(X) 0.0009963589
g7(X) 3.7005956376
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Chapter 4
Applications of Modified Optimization
Algorithms to the Unconstrained
and Constrained Problems

It is observed from the literature that modification in a particular optimization
method suits well to a specific problem [1–18]. However, the same modification
may not work for the other applications. So, if any modification is done in any
optimization algorithm, it is required to check that algorithm for a wide variety of
problems before drawing any general conclusion for the modification incorporated.

To check the performance of the modified algorithms, thirteen unconstrained
and twenty-four constrained benchmark problems are considered in this book.
Moreover, twenty different mechanical element design optimization problems are
considered to check the effectiveness of any modifications in optimization algo-
rithms for suitability to such mechanical design optimization problems. Details of
different benchmark problems and mechanical design problems considered in this
book are given in the following sections.

4.1 Unconstrained Benchmark Functions (BM-UC)

Thirteen different benchmark problems are considered in this book. All the con-
sidered unconstrained benchmark functions possess different characteristics like
separability, multimodality and regularity [19]. A function is multimodal if it has
two or more local optima. A function is separable if it can be written as a sum of
functions of variable separately. Function is regular if it is differentiable at each
point of their domain. Non-seperable functions are more difficult to optimize and
difficulty increases if the function is multimodel. Complexity increases when the
local optima are randomly distributed. Moreover, complexity increases with the
increase in dimensionality. Details of different unconstrained benchmark functions
along with their characteristics are given in Table 4.1.

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-2748-2_4, � Springer-Verlag London 2012
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4.2 Constrained Benchmark Functions (BM-C)

Twenty-four constrained benchmark functions are considered in this book with
different characteristics [20]. Objective functions and constraints are either linear,
nonlinear or quadratic in nature. Constraints are in the form of inequality, equality
or either of the both. Moreover, the ratio of the feasible to the total search space is
also different for the considered problems. Number of active constraints also varies
with the problems. Different characteristic of the considered constrained bench-
mark functions are given in Table 4.2.

n is the number of decision variables, q is the estimated ratio between the
feasible region and the search space, LI is the number of linear inequality con-
straints, NI is the number of nonlinear inequality constraints, LE is the number of
linear equality constraints, NE is the number of nonlinear equality constraints and
a is the number of active constraints at the optimum solution, O is the optimum
result.

Details of constrained benchmark functions are given as follows [20]:

G01:

Minimize:

f Xð Þ ¼ 5
X4

i¼1

xi � 5
X4

i¼1

x2
i �

X13

i¼5

xi ð4:1Þ

Subject to:

g1 Xð Þ ¼ 2x1 þ 2x2 þ x10 þ x11 � 10� 0 ð4:2Þ

g2 Xð Þ ¼ 2x1 þ 2x3 þ x10 þ x12 � 10� 0 ð4:3Þ

g3 Xð Þ ¼ 2x2 þ 2x3 þ x11 þ x12 � 10� 0 ð4:4Þ

g4 Xð Þ ¼ �8x1 þ x10� 0 ð4:5Þ

g5 Xð Þ ¼ �8x2 þ x11� 0 ð4:6Þ

g6 Xð Þ ¼ �8x3 þ x12� 0 ð4:7Þ

g7 Xð Þ ¼ �2x4 � x5 þ x10� 0 ð4:8Þ

g8 Xð Þ ¼ �2x6 � x7 þ x11� 0 ð4:9Þ

g9 Xð Þ ¼ �2x8 � x9 þ x12� 0 ð4:10Þ

G02:

Minimize:
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f Xð Þ ¼ �
Pn

i¼1 cos4 xið Þ � 2
Qn

i¼1 cos2 xið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ix2

i

p
�����

����� ð4:11Þ

Subject to:

g1 Xð Þ ¼ 0:75�
Yn

i¼1

xi� 0 ð4:12Þ

g2 Xð Þ ¼
Xn

i¼1

xi � 7:5n� 0 ð4:13Þ

G03:

Minimize:

f Xð Þ ¼ �
ffiffiffi
n
p� nYn

i¼1

xi ð4:14Þ

Subject to:

h1 Xð Þ ¼
Xn

i¼1

x2
i � 1 ¼ 0 ð4:15Þ

G04:

Minimize:

f ðXÞ ¼ 5:3578547x2
3 þ 0:8356891x1x5 þ 37:293239x1 � 4; 0792:141 ð4:16Þ

Subject to:

g1 Xð Þ ¼ 85:334407þ 0:005685x2x5 þ 0:0006262x1x4 � 0:0022053x3x5 � 92� 0

ð4:17Þ

g2 Xð Þ ¼ �85:334407� 0:005685x2x5 � 0:0006262x1x4 þ 0:0022053x3x5� 0

ð4:18Þ

g3 Xð Þ ¼ 80:51249þ 0:0071317x2x5 þ 0:002995x1x2 þ 0:0021813x2
3 � 110� 0

ð4:19Þ

g4 Xð Þ ¼ �80:51249� 0:0071317x2x5 � 0:002995x1x2 � 0:0021813x2
3 þ 90� 0

ð4:20Þ
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g5 Xð Þ ¼ 9:300961 þ 0:0047026x3x5 þ 0:0012547x1x3 þ 0:0019085x3x4 � 25� 0

ð4:21Þ

g6 Xð Þ ¼ �9:300961 � 0:0047026x3x5 � 0:0012547x1x3 � 0:0019085x3x4

þ 20� 0

ð4:22Þ

G05:

Minimize:

f ðXÞ ¼ 3x1 þ 0:000001x3
1 þ 2x2 þ ð0:000002=3Þx3

2 ð4:23Þ

Subject to:

g1 Xð Þ ¼ �x4 þ x3 � 0:55� 0 ð4:24Þ

g2 Xð Þ ¼ �x3 þ x4 � 0:55� 0 ð4:25Þ

h3 Xð Þ ¼ 1; 000 sinð�x3 � 0:25Þ þ 1; 000 sinð�x4 � 0:25Þ þ 894:8� x1 ¼ 0

ð4:26Þ

h4 Xð Þ ¼ 1; 000 sinðx3 � 0:25Þ þ 1; 000 sinðx3 � x4 � 0:25Þ þ 894:8� x2 ¼ 0

ð4:27Þ

h5 Xð Þ ¼ 1; 000 sinðx4 � 0:25Þ þ 1; 000 sinðx4 � x3 � 0:25Þ þ 1; 294:8 ¼ 0

ð4:28Þ

G06:

Minimize:

f ðXÞ ¼ ðx1 � 10Þ3 þ ðx2 � 20Þ3 ð4:29Þ

Subject to:

g1 Xð Þ ¼ �ðx1 � 5Þ2 � ðx2 � 5Þ2 þ 100� 0 ð4:30Þ

g2 Xð Þ ¼ ðx1 � 6Þ2 þ ðx2 � 5Þ2 � 82:81� 0 ð4:31Þ

where 13� x1� 100 and 0� x2� 100

G07:

Minimize:
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f ðXÞ ¼ x2
1 þ x2

2 � x1x2 � 14x1 � 16x2 þ ðx3 � 10Þ2 þ 4ðx4 � 5Þ2þ
ðx5 � 3Þ2 þ 2ðx6 � 1Þ2 þ 5x2

7 þ 7ðx8 � 11Þ2 þ 2ðx9 � 10Þ2þ
ðx10 � 7Þ2 þ 45

ð4:32Þ

Subject to:

g1 Xð Þ ¼ �105þ 4x1 þ 5x2 � 3x7 þ 9x8� 0 ð4:33Þ

g2 Xð Þ ¼ 10x1 � 8x2 � 17x7 þ 2x8� 0 ð4:34Þ

g3 Xð Þ ¼ �8x1 þ 2x2 þ 5x9 � 2x10 � 12� 0 ð4:35Þ

g4 Xð Þ ¼ 3ðx1 � 2Þ2 þ 4ðx2 � 3Þ2 þ 2x2
3 � 7x4 � 120� 0 ð4:36Þ

g5 Xð Þ ¼ 5x2
1 þ 8x2 þ ðx3 � 6Þ2 � 2x4 � 40� 0 ð4:37Þ

g6 Xð Þ ¼ x2
1 þ 2ðx2 � 2Þ2 � 2x1x2 þ 14x5 � 6x6� 0 ð4:38Þ

g7 Xð Þ ¼ 0:5ðx1 � 8Þ2 þ 2ðx2 � 4Þ2 þ 3x2
5 � x6 � 30� 0 ð4:39Þ

g8 Xð Þ ¼ �3x1 þ 6x2 þ 12ðx9 � 8Þ2 � 7x10� 0 ð4:40Þ

G08:

Minimize:

f ðXÞ ¼ � sin3ð2px1Þ sinð2px2Þ
x3

1ðx1 þ x2Þ
ð4:41Þ

Subject to:

g1 Xð Þ ¼ x2
1 � x2 þ 1� 0 ð4:42Þ

g2 Xð Þ ¼ 1� x1 þ ðx2 � 4Þ2� 0 ð4:43Þ

G09:

Minimize:

f ðXÞ ¼ ðx1 � 10Þ2 þ 5ðx2 � 12Þ2 þ x4
3 þ 3ðx4 � 11Þ2 þ 10x6

5 þ 7x2
6 þ x4

7 � 4x6x7

� 10x6 � 8x7

ð4:44Þ

Subject to:
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g1 Xð Þ ¼ �127þ 2x2
1 þ 3x4

2 þ x3 þ 4x2
4 þ 5x5� 0 ð4:45Þ

g2 Xð Þ ¼ �282þ 7x1 þ 3x2 þ 10x2
3 þ x4 � x5� 0 ð4:46Þ

g3 Xð Þ ¼ �196þ 23x1 þ x2
2 þ 6x2

6 � 8x7� 0 ð4:47Þ

g4 Xð Þ ¼ 4x2
1 þ x2

2 � 3x1x2 þ 2x2
3 þ 5x6 � 11x7� 0 ð4:48Þ

where, �10� xi� 10 ði ¼ 1; . . .; 7Þ

G10:

Minimize:

f ðXÞ ¼ x1 þ x2 þ x3 ð4:49Þ

Subject to:

g1 Xð Þ ¼ �1þ 0:0025ðx4 þ x6Þ� 0 ð4:50Þ

g2 Xð Þ ¼ �1þ 0:0025ðx5 þ x7 � x4Þ� 0 ð4:51Þ

g3 Xð Þ ¼ �1þ 0:01ðx8 � x5Þ� 0 ð4:52Þ

g4 Xð Þ ¼ �x1x6 þ 833:3325x4 þ 100x1 � 83; 333:333� 0 ð4:53Þ

g5 Xð Þ ¼ �x2x7 þ 1; 250x5 þ x2x4 � 1; 250x4� 0 ð4:54Þ

g6 Xð Þ ¼ �x3x8 þ 125; 000þ x3x5 � 2; 500x5� 0 ð4:55Þ

G11:

Minimize:

f ðXÞ ¼ x2
1 þ ðx2 � 1Þ2 ð4:56Þ

Subject to:

hðXÞ ¼ x2 � x2
1 ¼ 0 ð4:57Þ

G12:

Minimize:

f ðXÞ ¼ �ð100� ðx1 � 5Þ2 � ðx2 � 5Þ2 � ðx3 � 5Þ2Þ=100 ð4:58Þ

Subject to:
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gðXÞ ¼ ðx1 � pÞ2 þ ðx2 � qÞ2 þ ðx3 � rÞ2 � 0:0625� 0 ð4:59Þ

where 0� xi� 10 ði ¼ 1; 2; 3Þ and p; q; r ¼ 1; 2; . . .; 9:

G13:

Minimize:

f ðXÞ ¼ ex1x2x3x4x5 ð4:60Þ

Subject to:

h1ðXÞ ¼ x2
1 þ x2

2 þ x2
3 þ x2

4 þ x2
5 � 10 ¼ 0 ð4:61Þ

h2ðXÞ ¼ x2x3 � 5x4x5 ¼ 0 ð4:62Þ

h3ðXÞ ¼ x3
1 þ x3

2 þ 1 ¼ 0 ð4:63Þ

G14:

Minimize:

f ðXÞ ¼
X10

i¼1

xi ci þ ln
xiP10
j¼i xj

 !
ð4:64Þ

Subject to:

h1ðXÞ ¼ x1 þ 2x2 þ 2x3 þ x6 þ x10 � 2 ¼ 0 ð4:65Þ

h2ðXÞ ¼ x4 þ 2x5 þ x6 þ x7 � 1 ¼ 0 ð4:66Þ

h3ðXÞ ¼ x3 þ x7 þ x8 þ 2x9 þ x10 � 1 ¼ 0 ð4:67Þ

where, 0� xi� 10 ði ¼ 1; . . .; 10Þ and
c1 ¼ �6:089; c2 ¼ �17:164; c3 ¼ �34:054; c4 ¼ �5:914; c5 ¼ �24:721; c6 ¼
�14:986; c7 ¼ �24:1; c8 ¼ �10:708; c9 ¼ �26:662; c10 ¼ �22:179

G15:

Minimize:

f ðXÞ ¼ 1000� x2
1 � 2x2

2 � x2
3 � x1x2 � x1x3 ð4:68Þ

Subject to:

h1ðXÞ ¼ x2
1 þ x2

2 þ x2
3 � 25 ¼ 0 ð4:69Þ

h2ðXÞ ¼ 8x1 þ 14x2 þ 7x3 � 56 ¼ 0 ð4:70Þ
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where 0� xi� 10 ði ¼ 1; 2; 3Þ

G16:

Minimize:

f ðXÞ ¼ 0:000117y14 þ 0:1365þ 0:00002358y13 þ 0:000001502y16 þ 0:0321y12

þ 0:004324y5 þ 0:001
c15

c16
þ 37:48

y2

c12
� 0:0000005843y17

ð4:71Þ

Subject to:

g1ðXÞ ¼
0:28
0:72

y5 � y4� 0 ð4:72Þ

g2ðXÞ ¼ x3 � 1:5x2� 0 ð4:73Þ

g3ðXÞ ¼ 3; 496
y2

c12
� 21� 0 ð4:74Þ

g4ðXÞ ¼ 110:6þ y1 �
62; 212

c17
� 0 ð4:75Þ

g5ðXÞ ¼ 213:1� y1� 0 ð4:76Þ

g6ðXÞ ¼ y1 � 405:23� 0 ð4:77Þ

g7ðXÞ ¼ 17:505� y2� 0 ð4:78Þ

g8ðXÞ ¼ y2 � 1; 053:6667� 0 ð4:79Þ

g9ðXÞ ¼ 11:275� y3� 0 ð4:80Þ

g10ðXÞ ¼ y3 � 35:03� 0 ð4:81Þ

g11ðXÞ ¼ 214:228� y4� 0 ð4:82Þ

g12ðXÞ ¼ y4 � 665:585� 0 ð4:83Þ

g13ðXÞ ¼ 7:458� y5� 0 ð4:84Þ

g14ðXÞ ¼ y5 � 584:463� 0 ð4:85Þ

g15ðXÞ ¼ 0:961� y6� 0 ð4:86Þ

g16ðXÞ ¼ y6 � 265:961� 0 ð4:87Þ

g17ðXÞ ¼ 1:612� y7� 0 ð4:88Þ

g18ðXÞ ¼ y7 � 7:046� 0 ð4:89Þ
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g19ðXÞ ¼ 0:146� y8� 0 ð4:90Þ

g20ðXÞ ¼ y8 � 0:222� 0 ð4:91Þ

g21ðXÞ ¼ 107:99� y9� 0 ð4:92Þ

g22ðXÞ ¼ y9 � 273:366� 0 ð4:93Þ

g23ðXÞ ¼ 922:693� y10� 0 ð4:94Þ

g24ðXÞ ¼ y10 � 1; 286:105� 0 ð4:95Þ

g25ðXÞ ¼ 926:832� y11� 0 ð4:96Þ

g26ðXÞ ¼ y11 � 1; 444:046� 0 ð4:97Þ

g27ðXÞ ¼ 18:766� y12� 0 ð4:98Þ

g28ðXÞ ¼ y12 � 537:141� 0 ð4:99Þ

g29ðXÞ ¼ 1072:163� y13� 0 ð4:100Þ

g30ðXÞ ¼ y13 � 3; 247:039� 0 ð4:101Þ

g31ðXÞ ¼ 8; 961:448� y14� 0 ð4:102Þ

g32ðXÞ ¼ y14 � 26; 844:086� 0 ð4:103Þ

g33ðXÞ ¼ 0:063� y15� 0 ð4:104Þ

g34ðXÞ ¼ y15 � 0:386� 0 ð4:105Þ

g35ðXÞ ¼ 71; 084:33� y16� 0 ð4:106Þ

g36ðXÞ ¼ �140; 000þ y16� 0 ð4:107Þ

g37ðXÞ ¼ 2; 802; 713� y17� 0 ð4:108Þ

g38ðXÞ ¼ y17 � 12; 146; 108� 0 ð4:109Þ

Where, y1 ¼ x2 þ x3 þ 41:6; c1 ¼ 0:024x4 � 4:62; y2 ¼
12:5
c1
þ 12; c2 ¼

0:0003535x2
1 þ 0:5311x1 þ 0:08705y2x1; c3 ¼ 0:052x1 þ 78þ 0:002377y2x1;

y3 ¼
c2

c3
; y4 ¼ 19y3; c4 ¼ 0:04782ðx1 � y3Þ þ

0:1956ðx1 � y3Þ2

x2
þ 0:6376y4

þ1:594y3; c5 ¼ 100x2; c6 ¼ x1 � y3 � y4; c7 ¼ 0:950� c4
c5
; y5 ¼ c6c7; y6 ¼

x1 � y5 � y4 � y3; c8 ¼ ðy5 þ y4Þ0:995; y7 ¼ c8
y1
; y8 ¼ c8

3;798 ; c9 ¼ y7 � 0:0663y7
y8
�

0:3153; y9 ¼ 96:82
c9
þ 0:321y1; y10 ¼ 1:29y5 þ 1:258y4 þ 2:29y3 þ 1:71y6; y11 ¼

1:71x1 � 0:452y4 þ 0:580y3; c10 ¼ 12:3
752:3 ; c11 ¼ ð1:75y2Þð0:995x1Þ; c12 ¼ 0:995y10
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þ1; 998; y12 ¼ c10x1 þ c11
c12
; y13 ¼ c12 � 1:75y2; g22y14 ¼ 3; 623þ 64:4x2

þ58:4x3 þ 146;312
y6þx5

; c13 ¼ 0:995y10 þ 60:8x2 þ 48x4 � 0:1121y14 � 5; 095; y15 ¼
y13
c13
; y16 ¼ 148; 000� 331; 000y15 þ 40y13 � 61y15y13; c14 ¼ 2; 324y10�

28; 740; 000y2; y17 ¼ 14; 130; 000� 1; 328y10 � 531y11 þ c14
c12
; c15 ¼ y13

y15
� y13

0:52 ;

c16 ¼ 1:104� 0:72y15; c17 ¼ y9 þ x5; 704:4148� x1� 906:3855; 68:6� x2�
288:88; 0� x3� 134:75; 193� x4� 287:0966 and 25� x5� 84:1988

G17:

Minimize:

f ðXÞ ¼ f ðx1Þ þ f ðx2Þ ð4:110Þ

where,

f1ðx1Þ ¼
30x1 0� x1\300
31x1 300� x1\400

�
ð4:111Þ

f2ðx2Þ ¼
28x2 0� x2\100
29x2 100� x2\200
30x2 200� x2\1; 000

8
<

: ð4:112Þ

Subject to:

h1ðXÞ ¼ �x1 þ 300� x3x4

131:078
cosð1:48477� x6Þ þ

0:90798x2
3

131:078
cosð1:47588Þ

ð4:113Þ

h2ðXÞ ¼ �x2 �
x3x4

131:078
cosð1:48477þ x6Þ þ

0:90798x2
4

131:078
cosð1:47588Þ ð4:114Þ

h3ðXÞ ¼ �x5 �
x3x4

131:078
sinð1:48477þ x6Þ þ

0:90798x2
4

131:078
sinð1:47588Þ ð4:115Þ

h4ðXÞ ¼ 200� x3x4

131:078
sinð1:48477� x6Þ þ

0:90798x2
3

131:078
sinð1:47588Þ ð4:116Þ

where the bounds are 0� x1� 400; 0� x2� 1000; 340� x3� 420; 340� x4

� 420;�1000� x5� 1000 and 0� x6� 0:5236:
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G18:

Minimize:

f ðXÞ ¼ �0:5ðx1x4 � x2x3 þ x3x9 � x5x9 þ x5x8 � x6x7Þ ð4:117Þ

Subject to:

g1ðXÞ ¼ x2
3 þ x2

4 � 1� 0 ð4:118Þ

g2ðXÞ ¼ x2
9 � 1� 0 ð4:119Þ

g3ðXÞ ¼ x2
5 þ x2

6 � 1� 0 ð4:120Þ

g4ðXÞ ¼ x2
1 þ ðx2 � x9Þ2 � 1� 0 ð4:121Þ

g5ðXÞ ¼ ðx2 � x5Þ2 þ ðx2 � x6Þ2 � 1� 0 ð4:122Þ

g6ðXÞ ¼ ðx2 � x7Þ2 þ ðx2 � x8Þ2 � 1� 0 ð4:123Þ

g7ðXÞ ¼ ðx3 � x5Þ2 þ ðx4 � x6Þ2 � 1� 0 ð4:124Þ

g8ðXÞ ¼ ðx3 � x7Þ2 þ ðx4 � x8Þ2 � 1� 0 ð4:125Þ

g9ðXÞ ¼ x2
7 þ ðx8 � x9Þ2 � 1� 0 ð4:126Þ

g10ðXÞ ¼ x2x3 � x1x4 � 1� 0 ð4:127Þ

g11ðXÞ ¼ �x3x9� 0 ð4:128Þ

g12ðXÞ ¼ x5x9� 0 ð4:129Þ

g13ðXÞ ¼ x6x7 � x5x8� 0 ð4:130Þ

where the bounds are �10� xi� 10 ði ¼ 1; . . .; 8Þ and 0� x9� 20

G19:

Minimize:

f ðXÞ ¼
X5

j¼1

X5

i¼1

cijxð10þiÞxð10þjÞ þ 2
X5

j¼1

djx
3
ð10þjÞ �

X10

i¼1

bixi ð4:131Þ

Subject to:

gjðXÞ ¼ �2
X5

i¼1

cijxð10þiÞ � 3djx
2
ð10þjÞ � ej þ

X10

i¼1

aijxi� 0 j ¼ 1; . . .; 5 ð4:132Þ
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where b ¼ �40;�2;�0:25;�4;�4;�1;�40;�60; 5; 1½ � and the remaining
data is given in the Table 4.3

The bounds are 0� xi� 10 ði ¼ 1; . . .; 8Þ

G20:

Minimize:

f ðXÞ ¼
X24

i¼1

aixi ð4:133Þ

Subject to:

giðXÞ ¼
xi þ xðiþ12Þ
� 
P24

j¼1 xj þ ei

� 0 i ¼ 1; 2; 3 ð4:134Þ

giðXÞ ¼
xðiþ3Þ þ xðiþ15Þ
� 
P24

j¼1 xj þ ei

� 0 i ¼ 4; 5; 6 ð4:135Þ

hiðXÞ ¼
xðiþ12Þ

bðiþ12Þ
P24

j¼13
xj

bj

� cixi

40bi
P12

j¼1
xj

bj

¼ 0 i ¼ 1; . . .; 12 ð4:136Þ

h13ðXÞ ¼
X24

i¼1

xi � 1 ¼ 0 ð4:137Þ

h14ðXÞ ¼
X12

i¼1

xi

di
þ k

X24

i¼13

xi

bi
� 1:671 ¼ 0 ð4:138Þ

where k ¼ ð0:7302Þð530Þ 14:7
40

� 
and data set is detailed in Table 4.4. The bounds

are 0� xi� 10 ði ¼ 1; . . .; 24Þ

G21:

Minimize:

f ðXÞ ¼ x1 ð4:139Þ

Subject to:

g1ðXÞ ¼ �x1 þ 35x0:6
2 þ 35x0:6

3 � 0 ð4:140Þ

h1ðXÞ ¼ �300x3 þ 7; 500x5 � 7; 500x6 � 25x4x5 þ 25x4x6 þ x3x4 ¼ 0 ð4:141Þ

h2ðXÞ ¼ 100x2 þ 155:365x4 þ 2; 500x7 � x2x4 � 25x4x7 � 15; 536:5 ¼ 0

ð4:142Þ

h3ðXÞ ¼ �x5 þ lnð�x4 þ 900Þ ¼ 0 ð4:143Þ
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Table 4.3 Data set for benchmark function G19

j 1 2 3 4 5

ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
a1j -16 2 0 1 0
a2j 0 -2 0 0.4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1

Table 4.4 Data set for benchmark function G20

i ai bi ci di ei

1 0.0693 44.094 123.7 31.244 0.1
2 0.0577 58.12 31.7 36.12 0.3
3 0.05 58.12 45.7 34.784 0.4
4 0.2 137.4 14.7 92.7 0.3
5 0.26 120.9 84.7 82.7 0.6
6 0.55 170.9 27.7 91.6 0.3
7 0.06 62.501 49.7 56.708 -
8 0.1 84.94 7.1 82.7 -
9 0.12 133.425 2.1 80.8 -
10 0.18 82.507 17.7 64.517 -
11 0.1 46.07 0.85 49.4 -
12 0.09 60.097 0.64 49.1 -
13 0.0693 44.094 - - -
14 0.0577 58.12 - - -
15 0.05 58.12 - - -
16 0.2 137.4 - - -
17 0.26 120.9 - - -
18 0.55 170.9 - - -
19 0.06 62.501 - - -
20 0.1 84.94 - - -
21 0.12 133.425 - - -
22 0.18 82.507 - - -
23 0.1 46.07 - - -
24 0.09 60.097 - - -

84 4 Applications of Modified Optimization Algorithms



www.manaraa.com

h4ðXÞ ¼ �x6 þ lnðx4 þ 300Þ ¼ 0 ð4:144Þ

h5ðXÞ ¼ �x7 þ lnð�2x4 þ 700Þ ¼ 0 ð4:145Þ

where, the bounds are 0� x1� 1; 000; 0� x2; x3� 1; 000; 100� x4� 300; 6:3
� x5� 6:7; 5:9� x6� 6:4 and 4:5� x7� 6:25

G22:

Minimize:

f ðXÞ ¼ x1 ð4:146Þ

Subject to:

g1ðXÞ ¼ �x1 þ x0:6
2 þ x0:6

3 þ x0:6
4 � 0 ð4:147Þ

h1ðXÞ ¼ x5 � 100; 000x8 þ 1� 107 ¼ 0 ð4:148Þ

h2ðXÞ ¼ x6 þ 100; 000x8 � 100; 000x9 ¼ 0 ð4:149Þ

h3ðXÞ ¼ x7 þ 100; 000x9 � 5� 107 ¼ 0 ð4:150Þ

h4ðXÞ ¼ x5 þ 100; 000x10 � 3:3� 107 ¼ 0 ð4:151Þ

h5ðXÞ ¼ x6 þ 100; 000x11 � 4:4� 107 ¼ 0 ð4:152Þ

h6ðXÞ ¼ x7 þ 100; 000x12 � 6:6� 107 ¼ 0 ð4:153Þ

h7ðXÞ ¼ x5 � 120x2x13 ¼ 0 ð4:154Þ

h8ðXÞ ¼ x6 � 80x3x14 ¼ 0 ð4:155Þ

h9ðXÞ ¼ x7 � 40x4x15 ¼ 0 ð4:156Þ

h10ðXÞ ¼ x8 � x11 þ x16 ¼ 0 ð4:157Þ

h11ðXÞ ¼ x9 � x12 þ x17 ¼ 0 ð4:158Þ

h12ðXÞ ¼ �x18 þ lnðx10 � 100Þ ¼ 0 ð4:159Þ

h13ðXÞ ¼ �x19 þ lnð�x8 þ 300Þ ¼ 0 ð4:160Þ

h14ðXÞ ¼ �x20 þ lnðx16Þ ¼ 0 ð4:161Þ

h15ðXÞ ¼ �x21 þ lnð�x9 þ 400Þ ¼ 0 ð4:162Þ
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h16ðXÞ ¼ �x22 þ lnðx17Þ ¼ 0 ð4:163Þ

h17ðXÞ ¼ �x8 � x10 þ x13x18 � x13x19 þ 400 ¼ 0 ð4:164Þ

h18ðXÞ ¼ x8 � x10 � x11 þ x14x20 � x14x21 þ 400 ¼ 0 ð4:165Þ

h19ðXÞ ¼ x9 � x12 � 4:6051x15 þ x15x22 þ 100 ¼ 0 ð4:166Þ

Where, the bounds are 0� x1� 20; 000; 0� x2; x3; x4� 1� 106; 0� x5; x6; x7

� 4� 107; 100� x8� 299:99; 100� x9 � 399:99; 100:01� x10� 300; 100� x11

� 400; 100� x12 � 6000� x13; x14; x15� 500; 0:01� x17� 400; �4:7� x18; x19;
x20; x21; x22� 6:25

G23:

Minimize:

f ðXÞ ¼ �9x5 � 15x8 þ 6x1 þ 16x2 þ 10ðx6 þ x7Þ ð4:167Þ

Subject to:

g1ðXÞ ¼ x9x3 þ 0:02x6 � 0:025x5� 0 ð4:168Þ

g2ðXÞ ¼ x9x4 þ 0:02x7 � 0:015x8� 0 ð4:169Þ

h1ðXÞ ¼ x1 þ x2 � x3 � x4 ¼ 0 ð4:170Þ

h2ðXÞ ¼ 0:03x1 þ 0:01x2 � x9ðx3 þ x4Þ ¼ 0 ð4:171Þ

h3ðXÞ ¼ x3 þ x6 � x5 ¼ 0 ð4:172Þ

h4ðXÞ ¼ x4 þ x7 � x8 ¼ 0 ð4:173Þ

where the bounds are 0� x1; x2; x6� 300; 0� x3; x4; x5� 100; 0� x4; x8� 200
and 0:01� x9� 0:03

G24:

Minimize:

f ðXÞ ¼ �x1 � x2 ð4:174Þ

Subject to:

g1ðXÞ ¼ �2x4
1 þ 8x3

1 � 8x2
1 þ x2 � 2� 0 ð4:175Þ

g2ðXÞ ¼ �4x4
1 þ 32x3

1 � 88x2
1 þ 96x1 þ x2 � 36� 0 ð4:176Þ

where the bounds are 0� x1� 3 and 0� x2� 4
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4.3 Additional Mechanical Element Design Optimization
Problems (MD)

Seven different mechanical element design optimization problems are presented in
Chap. 2. In this chapter, thirteen more mechanical design element design opti-
mization problems are presented. Details of these additional mechanical element
design optimization problems are given as follows:

4.3.1 Example 8: Design of Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical heads as shown in
Fig. 4.1. The objective is to minimize the total cost, including the cost of the
material, forming and welding. There are four design variables: thickness of the
shell (Ts), thickness of the head (Th), inner radius (R) and length of the cylindrical
section of the vessel, not including the head (L) so design vector X = (x1, x2, x3,
x4) = (Ts, Th, R, L). Ts and Th are integer multiples of 0.0625 inch, which are the
available thicknesses of rolled steel plates, and R and L are continuous. The above
problem was solved by many researchers by using different optimization methods
like branch and bound approach [21], an augmented Lagrangian Multiplier
approach [22], Genetic Adaptive Search method (GeneAS) [23], self adaptive
penalty approach [24], society and civilization algorithm [25], Ant colony algo-
rithm [34] (l ? k)-Evolutionary Strategy(ES) [26], Unified Particle Swarm
Optimization (UPSO) [27], Co-evolutionary Particle Swarm Optimization (CPSO)
[28], Co-evolutionary Differential Evolution (CoDE) [29], modified particle
swarm optimization [7], Hybrid PSO-DE [30], Artificial Bee Colony (ABC) [31],
etc. the best solution reported is f(X) = 6059.714339 with X = (0.8125, 0.4375,
42.098446, 176.636596). The problem can be stated as follows:

Minimize:

f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x2
3 þ 3:1661x2

1x4 þ 19:84x2
1x3

ð4:177Þ

Subject to:

g1ðxÞ ¼ �x1 þ 0:0193x3� 0 ð4:178Þ

g2ðxÞ ¼ �x2 þ 0:00954x3� 0 ð4:179Þ

g3ðxÞ ¼ �px2
3x4 �

4
3
px3

3 þ 1; 296; 000� 0 ð4:180Þ

g4ðxÞ ¼ x4 � 240� 0 ð4:181Þ

where,
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0:1� x1� 99; 0:1� x2� 99; 10� x3� 200; 10� x4� 200

4.3.2 Example 9: Design of Welded Beam

The objective is to design a welded beam for minimum cost. There are four
design variables height of weld (h), length of weld (L), height of beam (t) and
width of beam (b) as shown in Fig. 4.2. Design vector can be defined as
X = (x1, x2, x3, x4) = (h, L, t, b). Design is subjected to the constraints on
shear stress (s), bending stress in the beam (r), buckling load on the bar (Pc),
end deflection of the beam (d) and side constraints. This problem is solved by
many researchers by using different optimization methods such as geometric
programming [32], Genetic Adaptive Search method (GeneAS) [23], self
adaptive penalty approach [24], society and civilization algorithm [25], Ant
colony algorithm [34] (l ? k)-Evolutionary Strategy(ES) [26], Unified Particle
Swarm Optimization (UPSO) [27], Co-evolutionary Particle Swarm Optimiza-
tion (CPSO) [28], Co-evolutionary Differential Evolution (CoDE) [29], modi-
fied particle swarm optimization [7], Hybrid PSO-DE [30], Artificial Bee
Colony (ABC) [31], etc. the best value reported in the literature is
f(X) = 1.724852 with X = (0.205730, 3.470489, 9.036624, 0.205730). The
problem can be stated as follows:

Minimize:

f ðxÞ ¼ 1:10471x2
1x2 þ 0:04811x3x4ð14:0þ x2Þ ð4:182Þ

Subject to:

g1ðxÞ ¼ sðxÞ � smax� 0 ð4:183Þ

g2ðxÞ ¼ rðxÞ � rmax� 0 ð4:184Þ

g3ðxÞ ¼ x1 � x4� 0 ð4:185Þ

Fig. 4.1 Pressure vessel
design (from [24] reprinted
with permission from
Elsevier)
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g4ðxÞ ¼ 0:10471x2
1 þ 0:04811x3x4ð14:0þ x2Þ � 5:0� 0 ð4:186Þ

g5ðxÞ ¼ 0:125� x1� 0 ð4:187Þ

g6ðxÞ ¼ dðxÞ � dmax� 0 ð4:188Þ

g7ðxÞ ¼ P� PcðxÞ� 0 ð4:189Þ

where,

sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0Þ2 þ 2s0s00

x2

2R
þ ðs00Þ2; s0 ¼ Pffiffiffi

2
p

x1x2

s
; s00 ¼ MR

J
; M ¼ PðLþ x2

2
Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ x1 þ x3

2

� �2
r

; J ¼ 2
ffiffiffi
2
p

x1x2
x2

2

12
þ x1 þ x3

2

� �2
� �� �

; rðxÞ ¼ 6PL

x4x2
3

dðxÞ ¼ 4PL3

Ex3
3x4

; PcðxÞ ¼
4:013E

ffiffiffiffiffiffi
x2

3x6
4

36

q

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !
;

P ¼ 6; 000 lb; L ¼ 14 in;E ¼ 30e6 psi;G ¼ 12e6 psi;

smax ¼ 13; 600 psi; rmax ¼ 30; 000 psi;

dmax ¼ 0:25 in

smax is the design shear stress of weld, s is the weld shear stress, rmax is the
design normal stress for beam material, r is the maximum beam bending stress,
Pc is the bar buckling load, d is the beam end deflection, E is the modulus of
elasticity for the beam material, and G is the modulus of rigidity for the beam
material.

Fig. 4.2 Welded beam (from
[24] reprinted with
permission from Elsevier)
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4.3.3 Example 10: Design of Tension/Compression Spring

This problem is taken from Belegundu [33] which consists of minimizing the weight of
a tension/compression spring as shown in Fig. 4.3) subject to constraints on minimum
deflection, shear stress, surge frequency, limits on outside diameter and on design
variables. The design variables are the wire diameter (d), the mean coil diameter
(D) and the number of active coils (N). Design vector can be defined as X = (x1, x2,
x3) = (d, D, N). This problem is solved by many researchers by using different opti-
mization techniques such as self adaptive penalty approach [24], society and civili-
zation algorithm [25], Ant colony algorithm [34] (l ? k)-Evolutionary Strategy(ES)
[26], Unified Particle Swarm Optimization (UPSO) [27], Co-evolutionary Particle
Swarm Optimization (CPSO) [28], Co-evolutionary Differential Evolution (CoDE)
[29], modified particle swarm optimization [7], Hybrid PSO-DE [30], Artificial Bee
Colony (ABC) [31], etc. the best result reported is f(X) = 0.012665 with
X = (0.051749, 0.358179, 11.203763). The problem can be expressed as:

Minimize:

f ðxÞ ¼ ðN þ 2ÞDd2 ð4:190Þ

Subject to:

g1ðxÞ ¼ 1� D3N

71785d4
� 0 ð4:191Þ

g2ðxÞ ¼
4D2 � dD

12; 566ðDd3 � d4Þ þ
1

5; 108d2
� 1� 0 ð4:192Þ

g3ðxÞ ¼ 1� 140:45d

D2N
� 0 ð4:193Þ

g4ðxÞ ¼
Dþ d

1:5
� 1� 0 ð4:194Þ

where
0:05� x1� 2; 0:25� x2� 1:3; 2� x3� 15

Fig. 4.3 Tension compression spring (from [24] reprinted with permission from Elsevier)
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4.3.4 Example 11: Design of a Speed Reducer

The weight of the speed reducer as shown in Fig. 4.4 is to be minimized subject to
constraints on bending stress of the gear teeth, surfaces stress, transverse deflec-
tions of the shafts and stresses in the shafts. The variables x1, x2, x3, x4, x5, x6 and
x7 are the face width, module of teeth, number of teeth in the pinion, length of the
first shaft between bearings, length of the second shaft between bearings and the
diameter of the first and second shafts, respectively. The third variable is integer,
the rest of them are continuous. This problem is solved by many researchers by
using different optimization techniques such as (l ? k)-Evolutionary Strategy
(ES) [26], Unified Particle Swarm Optimization (UPSO) [27], Hybrid PSO-DE
[30], ABC [31], etc. the best result reported by Montes and Coello [26] is
f(X) = 2996.3481 with X = (3.49999, 0.6999, 17, 7.3, 7.8, 3.3502, 5.2866). The
problem can be stated as:

Minimize:

f ðxÞ ¼ 0:7854x1x2
2ð3:3333x2

3 þ 14:9334x3 � 43:0934Þ � 1:508x1ðx2
6 þ x2

7Þþ
7:4777ðx3

6 þ x3
7Þ þ 0:7854ðx4x2

6 þ x5x2
7Þ

ð4:195Þ
Subject to:

g1ðxÞ ¼
27

x1x2
2x3
� 1� 0 ð4:196Þ

g2ðxÞ ¼
397:5

x1x2
2x2

3

� 1� 0 ð4:197Þ

g3ðxÞ ¼
1:93x3

4

x2x3x4
6

� 1� 0 ð4:198Þ

Fig. 4.4 Speed reducer
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g4ðxÞ ¼
1:93x3

5

x2x3x4
7

� 1� 0 ð4:199Þ

g5ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x4
x2x3

� �2
þ16:9e6

r

110x3
6

� 1� 0 ð4:200Þ

g6ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5
x2x3

� �2
þ157:5e6

r

85x3
7

� 1� 0 ð4:201Þ

g7ðxÞ ¼
x2x3

40
� 1� 0 ð4:202Þ

g8ðxÞ ¼
5x2

x1
� 1� 0 ð4:203Þ

g9ðxÞ ¼
x1

12x2
� 1� 0 ð4:204Þ

g10ðxÞ ¼
1:5x6 þ 1:9

x4
� 1� 0 ð4:205Þ

g11ðxÞ ¼
1:1x7 þ 1:9

x5
� 1� 0 ð4:206Þ

where,

2:6� x1� 3:6; 0:7� x2� 0:8; 17� x3� 28; 7:3� x4� 8:3; 7:8� x5� 8:3;

2:9� x6� 3:9; 5:0� x7� 5:5

4.3.5 Example 12: Design of Stiffened Cylindrical Shell

This problem is taken from Jarmai et al. [35]. The objective is to optimize cost of a
cylindrical shell member that is orthogonally stiffened by using ring stiffeners of
box cross section and stringers of halved I-section Figs. 4.5 and 4.6.

The objective function for the stiffened shell is given as

f ðXÞ ¼ KM þ
X

i

KFi þ KP ð4:207Þ

where, Km is the cost of material, KFi is the cost of fabrication and KP is the cost
of painting.

where,

KM ¼ kM15qV1 þ kM1qnrVR þ kM2qnsAsL
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KF0 ¼ 5kFHel; l ¼ 6:8582513� 4; 527217t�0:5 þ 0:009541996 2Rð Þ0:5

KF1 ¼ 5kF H
ffiffiffiffiffiffiffiffiffiffiffi
jqV1

p
þ 1:3� 0:1520� 10�3t1:9358 � 2Ls

� �
; H ¼ 2; j ¼ 2

KF2 ¼ kF H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
25qV1

p
þ 1:3� 0:1520� 10�3t1:9358 � 4� 2Rp

� �

Fig. 4.5 Orthogonally stiffened cylindrical shell with stringer and ring stiffener acted by
compression and external pressure (from Jarmai et al. [35] reprinted with permission from Elsevier)

Fig. 4.6 Halved rolled I—section as a stringer (from Jarmai et al. [35] reprinted with permission
from Elsevier)

4.3 Additional Mechanical Element Design Optimization Problems (MD) 93



www.manaraa.com

KF3 ¼ nrkF 3
ffiffiffiffiffiffiffiffiffiffiffi
3qVR

p
þ 1:3� 0:3394� 10�3a2

wr4p R� hrð Þ
� �

KF4 ¼ kF 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nr þ 1

p� �
q 5V1 þ nrVRð Þ þ 1:3� 0:3394� 10�3a2

wrnr4Rp
� �

KF5¼ kF 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nrþnsþ1ð Þq 5V1þnrVRþnsAsLð Þ

p
þ1:3�0:3394�10�3a2

wsns2L
� �

KP¼kP 2RpLþ2Rp L�nrhrð Þþ2nrphr R�hrð Þþ4pnrhr R�hr

2

� �
þnsL h1þ2bð Þ

� �

V1 ¼ 2RptLs

VR ¼ 2pdrh
2
r R� hrð Þ þ 4pdrh

2
r R� hr

2

� �

KM1 is the cost factor for plates, KF0 is the fabrication cost to form plate
elements into cylindrical shapes, KF1 is the welding cost of shell segments from 2
curved plates, KF2 is the welding cost of whole un-stiffened shell from 5 shell
segments, KF3 is the welding of ring stiffeners from 3 plates, KF4 is the welding of
ring stiffeners into the shell, KF5 is the welding stringers into the shell, V1 is the
volume of shell segment, VR is the volume of ring stiffener, KM is the material cost,
q is the material density of steel.
The above objective function includes the material, manufacturing and painting
cost. The design is subjected to the shell buckling, panel stiffener buckling, panel
ring buckling and manufacturing limitations. Design is followed according to
DNV-RP-C202. They are explained as below.

Shell buckling

For the shell buckling the equivalent stress should satisfy the following
condition.

g1ðXÞ ¼ re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a � rarp þ r2
p

q
� fy1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k4
s

q ð4:208Þ

where,

ra ¼
NF

2Rp te
; te ¼ t þ As

s
; s ¼ 2Rp

ns
; rp ¼

pFR

tð1þ aÞ ; a ¼ AR

Le0t
;

Le0 ¼ min Lr;Ler ¼ 1:56
ffiffiffiffiffi
Rt
p� 

; Lr ¼ L
nr�1 ; k2

s ¼
fy1

re

ra
rEas
þ rp

rEps

� �
; rEas ¼ cas

p2E
12 1�m2ð Þ

t
s

� 2
; cas ¼ was

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qasnas

was

� �2
r

; was ¼ 4; zas ¼ s2

Rt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2
p

; nas ¼ 0:702Zas;

qas ¼ 0:5 1þ R
150t

� �0:5
; rEps ¼ Cps

p2E
10:92

t
s

� 2
; Cps ¼ wps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qpsnps

wps

� �2
r

;
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qps ¼ 0:6; nps ¼ 1:04 s
Lr

ffiffiffiffiffiffi
zps
p

; zps ¼ zas; wps ¼ 1þ s
Lr

� �2
� �2

fy is the yield stress, NF is the factored compression force, R is the shell radius, t is
the shell thickness, As is the cross-sectional area of stringer, ns is the number of
longitudinal stiffeners, pF is the factored external pressure intensity, Ar is the cross-
sectional area of ring stiffener, L is the shell length, nr is the number of ring stiffeners,
Lr is the distance between rings, rEas is the elastic buckling strength for axial force,
rEps is the elastic buckling strength for lateral pressure, ra is the design axial stress
due to axial forces, rp is the design cicumferential stress in the shell due to external
pressure, Cas is the reduced buckling coefficient, ks is the reduced shell slenderness, c
is the poissons ratio, s is the distance between longitudinal stiffeners.

Panel stiffener buckling

For panel stiffener buckling the equivalent stress should satisfy the following
condition.

g2ðXÞ ¼ re�
fy1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k4
p

q ð4:209Þ

where

k2
p ¼

fy1

re

ra

rEap
þ rp

rEpp

� �
; rEap ¼ cap

p2E

10:92
t

Lr

� �2

;

cap ¼ wap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
qapnap

wap

 !2
vuut ; qap ¼ 0:5;

nap ¼ 0:702Zap; zap ¼
L2

r

Rt
0:9539; wap ¼

1þ cs

1þ As
set

; cs ¼ 10:92
Isef

st3
;

sE ¼ 1:9t

ffiffiffiffi
E

fy

s
; sE� s; se ¼ sE

and if sE� s; se ¼ s; ZG ¼
h1
2 tw

h1
4 þ t

2

� 
þ btf h1þtþtf

2

� �
set þ btf þ h1tw

2 ;

ISef ¼ setz2
G þ h1

2

� 3 tw
12þ

h1tw
2

h1
4 þ t

2� zG

� 2þbtf
h1þtþtf

2 � zG

� �2
As ¼ btf þ h1tw

2

rEpp ¼ cpp
p2E

10:92
t

Lr

� �2
; cpp ¼ wpp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qppnpp

wpp

� �2
r

; npp ¼ 1:04
ffiffiffiffiffiffi
zpp
p

; zpp ¼ zap;

qpp ¼ 0:6 and wpp ¼ 2 1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ cs

pð Þ
ISef is the moment of inertia of stiffener including effective shell plating se, b is

the flange width, tf is the flange thickness, h1/2 is the web height, tw is the web
thickness.
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Panel ring buckling

The ring stiffeners should satisfy following constraints

g3ðXÞ ¼ ARreq�AR ð4:210Þ

g4ðXÞ ¼ IRreq� IR ð4:211Þ

where,

tr � drhr;
1
dr
¼ 42e; e ¼

ffiffiffiffiffiffiffiffi
235
fy

s
; fy ¼ 355; dr ¼

1
34
; AR ¼ 3hrtr ¼ 3drh

2
r

ARreq ¼
2

Z2
þ 0:06

� �
Lrt; where Z ¼ L2

r

Rt
0:9539; Le ¼ min Lr;2� 1:56

ffiffiffiffiffi
Rt
p� �

yE ¼
Let hr þ t

2

� 
þ drh3

r

3drh2
r þ Let

; IR

¼ drh4
r

6
þ 2drh

2
r

hr

2
� yE

� �2

þdrh
2
r y2

E þ Let hr þ
t

2
� yE

� �2

IRreq ¼ Ia þ Ip; Ia ¼
rat 1þ As

st

� 
R4

0

500ELR
;

R0 ¼ R� hr � yEð Þ; Ip ¼
pFRR2

0Lr

3E
2þ 3EyEd0

R2
0

fy
2 � rp

� �

2

4

3

5;

d0 ¼ 0:005R;

Ia is the required moment of inertia, ARreq is the required cross-sectional area of
a ring stiffener, yE is the distance of centroid,

aws ¼ 0:4tw; aws:min ¼ 3mm and awr ¼ 0:4tr; awr:min ¼ 3mm

Manufacturing limitation

Manufacturing constraint is imposed to ensure the welding of the webs of the
halved rolled I-section stringers. This is possible if following constraint is satisfied.

g5ðXÞ ¼ ns�
2 R� hr

2

� 
p

bþ 300
ð4:212Þ

For this problem there are five design variables, shell thickness (t), number of
longitudinal stiffeners (stringers) (ns), number of ring stiffeners (nr), box height (hr)
and stringer stiffness height (h). Design vector can be defined as X = (x1, x2, x3, x4,
x5) = (t, ns, nr, hr, h). The above problem is solved by considering the design
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variables as continuous and second by considering desing variables as discrete. The
design with continuous design variables will be referred to as Example 12A in this
book. For the discrete design variables value of t, ns and nr can take integer value, hr

varies in the step of 10 and h can take any value from 152, 203, 254, 305, 356, 406,
457, 533, 610, 686, 762, 838 and 914. The design with discrete variables will be
referred to as Example 12B in this book. The best value reported by Jarmai et al. [35]
is f(X) = 54444.62 with X = (13.82, 26.85, 8.31, 260.96, 225.79) by considering
continuous design variables and f(X) = 55326.3 with X = (14, 27, 10, 250, 203) by
considering discrete design variables.

4.3.6 Example 13: Design of Step Cone Pulley

The objective is to design a 4-step cone pulley for minimum weight with 5 design
variables consisting of four design variables for the diameters (d1, d2 d3 and d4) of
each step and fifth one is the width of the pulley (w). Design vector can be defined
as X = (x1, x2, x3, x4, x5) = (d1, d2, d3, d4, w). Figure 4.7 shows a step cone pulley.
It is assumed in this example that width of cone pulley and belt is same. There are
11 constraints out of which 3 are equality constraints and the rest are inequality
constraints. Constraints are for the assurance of same belt length for all the steps,
tension ratios and power transmitted by the belt. Step pulley is designed to transmit
at least 0.75hp (0.75 9 745.6998 W), with the input speed of 350 rpm and output
speeds as 750, 450, 250 and 150 rpm. The problem is taken from Rao [36].

Minimize f ðxÞ ¼ qw d2
1 1þ N1

N

� �2
( )

þ d2
2 1þ N2

N

� �2
( )

þ d2
3 1þ N3

N

� �2
( )"

þd2
4 1þ N4

N

� �2
( )#

ð4:213Þ

Subject to:

h1ðxÞ ¼ C1 � C2 ¼ 0 ð4:214Þ

h2ðxÞ ¼ C1 � C3 ¼ 0 ð4:215Þ

h3ðxÞ ¼ C1 � C4 ¼ 0 ð4:216Þ

g1;2;3;4ðxÞ ¼ Ri� 2 ð4:217Þ

g5;6;7;8ðxÞ ¼ Pi�ð0:75 � 745:6998Þ ð4:218Þ

where,Ci indicates the length of the belt to obtain speed output Ni and it is given by:

Ci ¼
pdi

2
1þ Ni

N

� �
þ

Ni
N � 1
� 2

4a
þ 2a i ¼ ð1; 2; 3; 4Þ
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Ri is the tension ratios and it is given by:

Ri ¼ exp l p� 2 sin�1 Ni

N
� 1

� �
di

2a

� �� �� �
i ¼ ð1; 2; 3; 4Þ

And Pi is the power transmitted at each step which is given by:

Pi ¼ stw 1� exp �l p� 2 sin�1 Ni

N
� 1

� �
di

2a

� �� �� �� �
pdiNi

60
i ¼ ð1; 2; 3; 4Þ

q = 7,200 kg/m3, a = 3 m, l = 0.35, s = 1.75 MPa, t = 8 mm, 40 B x1, x2,
x3, x4 B 500, 16 B x5 B 100, l is the coefficient of friction between belt and
pulley, q is the density of material, N is the input speed, a is the center distance,
s is the maximum allowable stress in the belt and t is the thickness of belt.

4.3.7 Example 14: Design of Screw Jack

The screw jack as shown in Fig. 4.8 is to be designed such that the weight of the
screw is minimum [36]. The constraints imposed on the design are: design of
screw jack should be self locking; torsional shear stress induced in the screw

Fig. 4.7 Step cone pulley
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should not increase the torsional shear strength of screw material; shear stress in
the threads of screw and nut should not increase the torsional shear strength of
screw and nut material, respectively; bearing pressure should not exceed the
bearing strength and the buckling strength of the screw should be more than
the load lifted by the screw jack. Design variables are the outer diameter of the
screw (d), height of nut (h) and length of screw (l). Design vector can be defined
as X = (x1, x2, x3) = (d, h, l).

The problem can be stated as

f ðXÞ ¼ p=4 d � p=2ð Þ2 lþ hð Þ ð4:219Þ

Subject to:

g1ðXÞ ¼ /� a ð4:220Þ

g2ðXÞ ¼
16T

pd3
c

� 0:577ry ð4:221Þ

g3ðXÞ ¼
F

pndct
� 0:577ry ð4:222Þ

g4ðXÞ ¼
F

pndt
� 0:5ryn ð4:223Þ

g5ðXÞ ¼
F

p=4 d2 � d2
c

� 
n
� rb ð4:224Þ

g6ðXÞ ¼ Acry 1� ry

4Cp2E
l=kð Þ2

h i
�F ð4:225Þ

Fig. 4.8 Screw jack
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where,

p ¼ 5 if 22� d� 28; 6 if 30� d� 36; 7 if 38� d� 44; 8 if 46� d� 52; 9

if 55� d� 60;

F = 80 kN, ry = 220 MPa, ryn = 150 MPa, E = 206 9 105 MPa, d = [22, 24,
26,…60], 10 B h B 100, 350 B l B 500, l = 0.18, l1 = l/cosb, b = 0.252944,
A = tan l1, a = tan - 1(p/pdm), dm = d - p/2, T = Ftan(a ? A)dm/2,
dc = d - p/2, n = h/p, t = p/2, Ac = p/4dc

2, C = 0.25, k = 0.25dc, p is the
pitch of thread, A is the friction angle, a is the helix angle of thread, T is the
torque applied on screw, dc is the core diameter, ry is the allowable tensile stress
for screw, ryn is the allowable tensile stress for nut, n is the numbers of threads
in contact, F is the load acting on screw, t is the thickness of thread, rb is the
allowable bearing pressure, Ac is the cross-sectional area at core diameter, C is
the end fixity condition, l/k is the slenderness ratio, E is the modulus of elas-
ticity, k is the radius of gyration, l is the coefficient of friction, l1 is the
equivalent coefficient of friction, b is the thread angle and dm is the mean
diameter of screw.

4.3.8 Example 15: Design of C-Clamp

This problem is taken from Rao [36]. In this problem the objective is to minimize
the weight of a C-clamp subjected to the static load. C-clamp is having ‘T’ cross
section Fig. 4.9. There are five design variables and two inequality constraints.
Design variables are for the geometric dimension of the ‘T’ cross section (b, h, ti
and t) and the distance of inner edge from the center of curvature (Ri). Design
vector can be defined as X = (x1, x2, x3, x4, x4) = (b, h, ti,t, Ri).

Fig. 4.9 T-cross section and
its geometry for C-clamp
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The problem can be stated as:

f xð Þ ¼ min weight ¼ min volume

f ðxÞ ¼ area� length

f ðxÞ ¼ 150þ pRið Þ x1x3 þ x2 � x3ð Þx4ð Þ ð4:226Þ

where, x1 is the length of flange, x2 is the thickness of flange, x3 is the height of T
is the section, x4 is the thickness of web.

Subject to:

g1 xð Þ ¼ rtotal;i� ry ð4:227Þ

g2 xð Þ ¼ rtotal;0� ry ð4:228Þ

where,

R0 ¼ Ri þ x2; RN ¼
x3 x1 � x4ð Þ þ x1x2

x1 � x4ð Þ ln Riþx3
Ri

� �
þ x4 ln R0

Ri

� � ;

R ¼ Ri þ
1
2 x2

2x4 þ 1
2 x2

3 x1 � x4ð Þ
x2x4 þ x3 x1 � x4ð Þ

� �
;

e ¼ R� RN ; x ¼ 50þ R; M ¼ W � x; yi ¼ RN � Ri; y0 ¼ R0 � RN ;

rbi ¼
Myi

AeRi
; rb0 ¼

My0

AeR0

rt ¼ W
A ; rtotal;i ¼ rbi þ rt; rtotal;0 ¼ abs rt � rb0ð Þ, W = 1,200 N, ry = 200

N/mm2, 20 B Ri B 50, 1 B x1 B 50, 1 B x2 B 50, 0.1 B x3 B 10,
0.1 B x4 B 10, Rn is the radius of curvature of neutral axis, R is the radius of
curvature of centroidal axis, M is the bending moment acting about centroidal axis,
e is the distance of centroidal axis and neutral axis, Ro is the radius of curvature of
outside fiber of T-section, yo is the distance of neutral axis to outer fiber, yi is the
distance of neutral axis to inner fiber, rt is the axial stress acting on the cross
section, W is the load, ry is the allowable stress.

4.3.9 Example 16: Design of Hydrodynamic Bearing

This problem is also taken from Rao [36]. A hydrodynamic bearing is to be
designed to minimize a linear combination of frictional moment and angle of twist
of the shaft while carrying a load of 1000 lb by considering radius of the bearing
(R) and half length of bearing (L) as the design variables. Design vector can be
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defined as X = (x1, x2) = (R, L). The angular velocity of the shaft is to be greater
than 100 rad/sec.

The frictional moment of the bearing (M) and the angle of twist of the shaft (ø)
are given by:

M ¼ 8pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2
p lX

c
R2L ð4:229Þ

/ ¼ sel

GR
ð4:230Þ

where l is the viscosity of lubricant, n the eccentricity ratio (= e/c), e the
eccentricity of the journal relative to bearing, c the radial distance, X the angular
velocity of the shaft, R the radius of the journal, L the half length of the bearing, Se

the shear stress, l length between the driving point and the rotating mass and G the
shear modulus. The load on each bearing (W) is given by

W ¼ 2lXRL2n

c2 1� n2ð Þ2
p2 1� n2
� 

þ 16n2
� �1=2 ð4:231Þ

For the data: W = 1,000 lb, c/R = 0.0015, n = 0.9, l = 10 in., Se = 30,000 psi,
l = 10-6 lb-s/in2 and G = 12 9 106 psi.

By considering the objective function as a linear combination of the frictional
moment (M), the angle of twist of the shaft (ø), and the temperature rise of the oil
(T),

f ¼ aM þ b/þ cT ð4:232Þ

where a, b and c are constants. The temperature rise of the oil in the bearing is
given by

T ¼ 0:045
l XR2

c2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2ð Þ

p ð4:233Þ

where X ¼ 11:6RL�3

By assuming that 1in-lb of frictional moment in bearing is equal to 0.0025 rad of
angle of twist, which, in turn, is equivalent to 1� F rise in temperature, the constants
a, b and c can be determined. The optimization problem can be stated as

min f R; Lð Þ ¼ 0:44R3L�2 þ 10R�1 þ 0:592RL�3 ð4:234Þ

Subject to

8:62R�1L3� 1 ð4:235Þ

where, 0.1 B x1, x2 B 2
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4.3.10 Example 17: Design of Cone Clutch

This problem is taken from Rao [36]. The objective is to find the minimum volume
of the cone clutch shown in Fig. 4.9 such that it can transmit a specified minimum
torque. By selecting outer and inner radius of the cone, R1(x1) and R2(x2), as design
variables, the objective function can be expressed as

f R1;R2
� 

¼ 1
3
ph R2

1 þ R1R2 þ R2
2

� 
ð4:236Þ

where the axial thickness, h is given by

h ¼ R1 � R2

tan a
ð4:237Þ

where, a is the half cone angle.
From Eqs. (4.236) and (4.237) objective function reduces to:

f R1;R2
� 

¼ k1 R3
1 � R3

2

� 
ð4:238Þ

where, k1 ¼
p

3 tan a
The axial force applied (F) and the torque (T) are given by:

F ¼
Z

p dA sin a ¼
Z R1

R2

p
2pr dr

sin a
sin a ¼ pp R2

1 � R2
2

� 
ð4:239Þ

T ¼
Z

rfp dA ¼
Z R1

R2

rfp
2pr

sin a
dr ¼ 2pfp

3 sin a
R3

1 � R3
2

� 
ð4:240Þ

where p is pressure, f the coefficient of friction and A the area of contact. Sub-
stitution of p from Eqs. 4.239 and 4.240 force and torque leads to:

T ¼
k2 R2

1 þ R1R2 þ R2
2

� 

R1 þ R2
ð4:241Þ

where k2 ¼
2Ff

3 sin a
Since k1 is a constant, the objective function can be taken as f ¼ R3

1 � R3
2.

The minimum torque to be transmitted is assumed to be 5 k2. In addition, the
outer radius R1 is assumed to be equal to at least twice the inner radius R2. Thus the
optimization problem becomes: (Fig. 4.10)

min f Xð Þ ¼ R3
1 � R3

2 ð4:242Þ

g1ðXÞ ¼
R1

R2
� 2 ð4:243Þ
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where, 1 B x1, x2 B 10

4.3.11 Example 18: Design of Cantilever Support

The objective is to determine the cross-sectional dimensions of the cantilever
support for minimum weight. The support is having rectangular cross section with
dimensions x1 and x2. The maximum permissible bending stress is ry. The width
and depth of the beam are considered as design variables. The objective function is
given by,

f Xð Þ ¼ q lx1x2 ð4:244Þ

where q is the weight density and l is the length of the beam. The maximum stress
induced at the fixed end is given by

r ¼ Mc

I
¼ Pl

x2

2
1

1
12 x1x2

2

¼ 6Pl

x1x2
2

ð4:245Þ

Subject to:

g1ðXÞ ¼
6Pl

ry
x�1

1 x�2
2 � 1 ð4:246Þ

where, 0.01 B x1, x2 B 0.5

Fig. 4.10 Cone clutch
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4.3.12 Example 19: Design of Hydraulic Cylinder

The objective is to minimize the volume of a hydraulic cylinder subjected to
internal pressure, by taking the piston diameter (d), hydraulic pressure (p) and the
cylinder wall thickness (t) as design variables. Design vector can be defined as
X = (x1, x2, x3) = (d, p, t).

Minimum force required is F, that is,

f ¼ p
pd2

4
�F ð4:247Þ

Hoop stress induced should be less than allowable stress S,

s ¼ pd

2t
� S ð4:248Þ

Constraints on diameter, pressure and thickness imposed on the design of
hydraulic cylinder are: d þ 2t�D; p�P; t� T ; where D is the maximum outside
diameter permissible, P the maximum pressure of the hydraulic system and T the
minimum cylinder wall thickness required. The normalized form of all the con-
straints can be stated as:

g1ðXÞ ¼
4
p

Fp�1d�2� 1 ð4:249Þ

g2ðXÞ ¼
1
2

S�1pdt�1� 1 ð4:250Þ

Table 4.9 Comparison of results for the unconstrained benchmark functions by using different
variants of ABC

BM-UC BEST MEAN

ABC ABC_M ABC ABC_M

Sphere 0.000104 0 0.0002284 0.0000002
Schwefel 2.22 0.010707 0.000154 0.0121562 0.0007274
Schwefel 1.2 1,498.139116 140.068412 2,240.262653 339.1271168
Schwefel 2.21 14.051419 13.374404 17.4708172 15.5585162
Rosenbrock 24.629982 15.608202 78.5741148 90.0214244
Step 0 0 0 1.6
Quartic 0.000002 0 0.0000054 0
Schwefel 2.26 -12,239.35435 212,282.32144 -11,651.23524 212,035.7655
Rastrigin 25.777577 8.234402 30.8445478 15.864832
Ackley 0.067207 0.004777 0.0753638 0.3416602
Griewank 0.249771 0.008374 0.3749822 0.0205818
Penalty-1 0.097597 0.000164 0.68805 0.0642904
Penalty-2 0.156342 0.016479 0.411938 1.036791
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g3ðXÞ ¼ D�1d þ 2D�1t� 1 ð4:251Þ

g4ðXÞ ¼ P�1p� 1 ð4:252Þ

g5ðXÞ ¼ T t�1� 1 ð4:253Þ

The volume of the cylinder per unit length to be minimized is given by

f ðXÞ ¼ p t d þ tð Þ ð4:254Þ

where, 200 B x1 B 500, 1 B x2 B 5, 5 B x3 B 30

4.3.13 Example 20: Design of Planetary Gear Train

The gear teeth number of an automatic planetary transmission used in automobiles
is formulated as a constrained optimization problem by Simionescu et al. [37].
A planetary transmission of the Ravigneaux type with three forward and one
reverse gears used in automobiles is considered.

The objective is to minimize the gear ratio errors which can be stated as:

f1ð...Þ ¼ max ik � i0kj j k ¼ f1; 2;Rgð Þ ð4:255Þ

where i1 ¼
N6

N4
and i01 ¼ 3:11

i2 ¼
N6ðN1N3 þ N2N4Þ

N1N3ðN6 � N4Þ
and i02 ¼ 1:84

iR ¼
N2N6

N1N3

� �
and i0R ¼ �3:11

The problem contains the number of teeth as the design variables which are six
in number (N1, N2, N3, N4, N5 and N6) and can only take integer value. Moreover,
there are three more discrete design variables, number of planet (P) and module of
gears (m1 and m2) which can only take specified discrete values. Design vector can
be defined as X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, = (N1, N2, N3, N4, N5, N6, P, m1, m2).
The design is subjected to the following constraints:

For the avoidance of under cut:

N1;4�NS min ¼ 17 ð4:256Þ

N2;3;5�NP min ¼ 14 ð4:257Þ

Limiting the maximum outer diameter for ring gear, planet-2 and idler-5:

m3 N6 þ 2:5ð Þ�Dmax ð4:258Þ
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m1 N1 þ N2ð Þ þ m1 N2 þ 2ð Þ�Dmax ð4:259Þ

m3 N4 þ N5ð Þ þ m3 N5 þ 2ð Þ�Dmax ð4:260Þ

To avoid the contact between neighboring gears:

m1 N1 þ N2ð Þ � m3 N6 � N3ð Þj j �m1 þ m3 ð4:261Þ

N1 þ N2ð Þ � sin p=pð Þ � N2 � 2� d22� 0 ð4:262Þ

N6 � N3ð Þ � sin p=pð Þ � N3 � 2� d33� 0 ð4:263Þ

N4 þ N5ð Þ � sin p=pð Þ � N5 � 2� d55� 0 ð4:264Þ

N6 � N3ð Þ2þ N4 þ N5ð Þ2�2 N6 � N3ð Þ N4 þ N5ð Þ cos
2p
q
� b

� �
� N3 þ N5 þ 2þ d35ð Þ2

ð4:265Þ

where,

b ¼ cos�1 N6 � N3ð Þ2þ N4 þ N5ð Þ2� N3 þ N5ð Þ2

2 N6 � N3ð Þ N4 þ N5ð Þ

N6 � 2N3 � N4 � 4� 2d34� 0 ð4:266Þ

N6 � N4 � 2N5 � 4� 2d56� 0 ð4:267Þ

For assembly of ideal gears and to ensure equally spaced planet gears:

N6 � N4ð Þ=p ¼ integer ð4:268Þ

Fraction
1
p

N1

N2
þ N6

N3

����

����
� �

¼ A

N2
	 B

N3

����

���� ð4:269Þ

where,

0�A\N2=p;

0�B\N3=p;

N6�Dmax=m3 min � 2:5

The limitations on design variables are:

N1�Dmax=m1 min � 2NP min � 2 ð4:270Þ

N2� Dmax=m1 min � NS min � 2ð Þ=2 ð4:271Þ

N3� Dmax=m3 min � NS min � 6:5� 2d34ð Þ=2 ð4:272Þ

N4� Dmax=m3 min � 2NP min � 6:5� 2d56ð Þ ð4:273Þ
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N5� Dmax=m3 min � NS min � 6:5� 2d56ð Þ=2 ð4:274Þ

Dmax = 220, p can be 3, 4 or 5, and m1 and m3 can have following discrete
values : 1.75, 2.0, 2.25, 2.5, 2.75 or 3.0. The relative clearance between the
adjacent gears d22, d33, d55, d35 andd56 are considered as 0.5. The best value
reported by Simionescu et al. [37] is f(X) = 0.525 with X = (40, 21, 14, 19, 16,
69, 2.25, 2.5, 5).

4.4 Applications of Modified PSO

Basic version of PSO and modified PSO are compared based on a performance
evaluations. For the comparison following performance criteria evaluations are
considered.

• Population size = 50
• Number of generations = 500 (for unconstrained and constrained benchmark

functions), 200 (mechanical design problems)
• For PSO : c1 = c2 = 2, Vmax = 4, for basic PSO w varies linearly from 0.9 to

0.4 and for modified PSO w varies as per the modifications suggested in Chap. 2.
• Number of runs = 25

Comparison is based on the best and the mean solution achieved in 25 runs. The
comparison of results for the unconstrained benchmark functions, constrained
benchmark functions and mechanical element design optimization problems is
given in Tables 4.5, 4.6, 4.7, 4.8, respectively. In all these Tables, the values
indicated in ‘bold’ indicate the superior result and ‘BEST’ and ‘MEAN’ indicate
the best solution and mean solution obtained in 25 runs. It is observed from the
results that the modification in PSO has shown better results than the basic PSO.
PSO_M_1 has shown better results for the best solution for two unconstrained
benchmark functions and PSO_M_2 has shown better results for the best solution
for ten benchmark functions. For mean solution, PSO_M_1 has shown better
results for four unconstrained benchmark functions and PSO_M_2 has shown
better results for eight unconstrained benchmark functions. Moreover, PSO_M_2
has given near optimal solution up to the accuracy of four decimal for Sphere and
Quartic functions and global solution for the Step function.

It is observed from the results that the modification is also advantageous for the
constrained benchmark functions. Out of two variants of PSO, PSO_M_2 is better
when compared to PSO_M_1. PSO_M_2 has shown better results for twenty and
seventeen constrained benchmark functions for the best and the mean solutions,
respectively. PSO_M_2 has given near optimal solution for the five constrained
benchmark functions (G01, G04, G08, G12 and G24), while PSO and PSO_M_1
has shown near optimal solutions for four constrained benchmark functions. There
is no major difference in the results for the PSO and PSO_M_1 for the constrained
benchmark functions.

4.3 Additional Mechanical Element Design Optimization Problems (MD) 113
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For the mechanical design problems, both the variants of PSO are better than
basic PSO. PSO_M_2 has shown better results for twenty-three and nineteen
mechanical design problems for the best and the mean solutions, respectively.
Moreover, PSO_M_1 has also shown better results than basic PSO. No feasible
solutions were obtained for the Example 7 by any variants of PSO. It is observed
that PSO_M_2 has shown better performance in finding the best solutions for 10
unconstrained benchmark functions, 20 constrained benchmark functions and 23
mechanical element design problems. PSO_M_1 has shown better performance for
2, 8 and 8 unconstrained benchmark functions, constrained benchmark functions
and mechanical element design problems respectively and PSO has shown better
performance for 1, 8 and 4 unconstrained benchmark functions, constrained
benchmark functions and mechanical element design problems, respectively. So,
the performance of PSO_M_2 is approximately 4 times and 3 times better than
PSO and PSO_M_1 to find the best solutions. Similarly, it is observed that
PSO_M_2 is approximately 3 times and 2.5 times better than PSO and PSO_M_1
to find the mean solutions.

4.5 Applications of Modified ABC

Basic version of ABC and modified ABC are also compared based on a common
performance evaluation. For the comparison following performance criteria
evaluations are considered.

• Population size = 50
• Number of generations = 500 (for unconstrained and constrained benchmark

functions), 200 (mechanical design problems)
• For ABC: number of employed bees = number of onlooker bees,

limit = number of generations. ABC_M updates the solutions as per the mod-
ifications suggested in Chap. 2.

• Number of runs = 25

Comparison is based on the best and the mean solutions achieved in 25 runs.
The comparison of results for the unconstrained benchmark functions, constrained
benchmark functions and mechanical element design optimization problems are
given in Tables 4.9, 4.10, and 4.11, respectively.

It is observed from the results that modification in ABC has shown better results
than the basic ABC for the unconstrained benchmark functions. For all the thirteen
unconstrained benchmark problems ABC_M has outperformed basic ABC in
finding the best solution and also it has given nine times better results for the best
solutions. ABC_M has given global solution for the Sphere, Step and Quartic
functions. It has shown near optimal solution for Schwefel 2.22, Ackley, Grie-
wank, Penalty-1 accurate up to two decimal. Compared with PSO_M_2, ABC_M
has shown better results for nine benchmark problems. Moreover, ABC has also
shown better results than PSO_M_2 for the unconstrained benchmark functions.
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For the constrained benchmark functions ABC has outperformed ABC_M for
the 23 functions. For the mean solutions also ABC has shown better results than
ABC_M. The performance of ABC_M is nearly same as PSO_M_2 for the con-
strained benchmark function for finding the best solutions and the mean solutions.
So it can be said that modification in ABC is not effective for constrained
benchmark functions than that for unconstrained benchmark functions. It can
further be observed that for mechanical design problems ABC_M has slightly
outperformed ABC in finding the best solutions and ABC has slightly outper-
formed ABC_M in finding the mean solutions for the considered mechanical
design problems. It is observed that ABC has shown better performance in finding
the best solutions for 1 unconstrained benchmark functions, 23 constrained
benchmark functions and 17 mechanical element design problems. ABC_M has
shown better performance for 13, 4 and 19 unconstrained benchmark functions,
constrained benchmark functions and mechanical element design problems,
respectively. So, the performance of ABC is approximately 1.13 times better than
ABC_M to find the best solutions. Similarly, it is observed that ABC is approx-
imately 1.38 times better than ABC_M to find the mean solutions.

4.6 Applications of Modified HEA

Basic version of HEA and modified HEA are also compared based on a common
experimental platform. For the comparison following performance criteria eval-
uations are considered.

• Population size = 50

Table 4.12 Comparison of results for the unconstrained benchmark functions by using different
variants of HEA

BM-UC BEST MEAN

HEA HEA_M HEA HEA_M

Sphere 30.297161 36.397414 35.10702 37.60604
Schwefel 2.22 22.629791 23.110424 24.6817 26.19577
Schwefel 1.2 294.619348 225.755718 350.7362 259.1098
Schwefel 2.21 2.628382 2.738248 2.829465 2.78994
Rosenbrock 13,642.06328 7,851.377546 17,442.74 14,298.37
Step 34 37 38.66667 42
Quartic 60.814456 50.60093 100.005 170.177
Schwefel 2.26 -3,304.72498 23,972.831203 -3,107.25 23,504.37
Rastrigin 297.924276 306.126284 330.6954 327.367
Ackley 5.337689 5.377059 5.625639 5.68304
Griewank 75.79477 3.051871 77.92893 4.311237
Penalty-1 1.202707 0.567072 1.368613 0.914487
Penalty-2 3.399486 4.372659 4.326432 4.95895
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• Number of generations = 500 (for unconstrained and constrained benchmark
functions), 200 (mechanical design problems)

• For HEA: codal length = 10, HEA_M updates the solutions as per the modi-
fications suggested in Chap. 2 for which the mutation rate was kept as 0.2.

• Number of runs = 25

Comparison is based on the best and the mean solution achieved in 25 runs. The
comparison of results for the unconstrained benchmark functions, constrained
benchmark functions and mechanical design problems are given in Tables 4.12,
4.13 and 4.14, respectively.

It is observed from the results that modification is not so effective for the
unconstrained benchmark functions for finding the best and the mean solutions.
Modification is effective in finding the mean solutions for the constrained
benchmark functions. Moreover, modification is very effective for the mechanical
design problems for finding the best and the mean solutions. It is observed that
HEA_M has shown better performance in finding the best solutions for 6
unconstrained benchmark functions, 16 constrained benchmark functions and 21
mechanical element design problems. HEA has shown better performance for 7, 11
and 7 unconstrained benchmark functions, constrained benchmark functions and
mechanical element design problems, respectively. So, the performance of
HEA_M is approximately 1.9 times better than HEA to find the best solutions.
Similarly, it is observed that HEA_M is approximately 3.6 times better than HEA
to find the mean solutions. The main drawback of HEA is that it describes the
design variables in the form of a string which requires the complicated coding and
decoding process resulting in the increase of computational efforts. Moreover, it is
observed from the results that variants of PSO and ABC are better than the variants
of HEA.

It is observed that ABC is approximately 1.1 times and 2.9 times better than
PSO_M_2 in finding the best and the mean solutions and 32 times and 31 times
better than HEA and HEA_M in finding the best solutions and the mean solutions.
So, out of all the algorithms considered for the modifications, modification in PSO
and HEA is effective than their basic version. Modifications in ABC are not so
effective for constrained benchmark functions, but it is effective for unconstrained
benchmark functions and mechanical design problems. Overall performance
indicates that basic ABC is better than all the variants of PSO and HEA.

The next chapter presents the applications of four different hybrid algorithms to
unconstrained and constrained benchmark functions and also on mechanical ele-
ment design optimization problems.
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Chapter 5
Applications of Hybrid Optimization
Algorithms to the Unconstrained
and Constrained Problems

Hybridization is one of the effective ways to improve the effectiveness of the algo-
rithms. Hybridization combines the searching capabilities of different algorithms.
There iscontinuous researchgoingontohybridizedifferentalgorithmsand to improve
its effectiveness for the particular application. In this book experiment is conducted to
hybridize ABC with other optimization algorithms. ABC is chosen because, as
observed from the Chaps. 2 and 3, it has better searching tendency than other opti-
mization algorithm. The other reason is that ABC is the recent optimization algorithm
and no literature is available for its hybridization. Five different optimization algo-
rithms, PSO, BBO, AIA, DE and GA, are chosen to hybridize it with ABC. All these
five algorithms are checked for the unconstrained benchmark functions. Following
experimental setup was used for the performance evaluation of the algorithms:

• Population size = 50
• Number of generations = 500
• For PSO: w varies linearly from 0.9 to 0.4, c1 = 2, c2 = 2, Vmax = 4
• For ABC: Number of employed bees = number of onlooker bees = Population

size/2, limit = number of generation.
• For DE: F = 0.5, C = 0.5
• For BBO: Immigration rate = emigration rate = 1, mutation factor = 0.01,
• For AIA: Clone size = population size, b = 1, recipoteir rate = 0.25
• For GA: Crossover probability = 0.9, mutation probability = 0.01, cross-

over = single point crossover, selection = roulette wheel selection.

Results for the best and the mean solutions are given in Tables 5.1 and 5.2. It is
observed from the results that DE has outperformed all the algorithms by showing
better results for nine benchmark functions in finding best and the mean solutions.
Moreover, PSO, BBO and GA have shown better results for two, one and one
benchmark functions, respectively. AIA fails to overcome any algorithm for the
best and the mean solutions. From the above observation, it is decided to hybridize
ABC with PSO, BBO, DE and GA. So four different hybrid algorithms developed in

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-2748-2_5, � Springer-Verlag London 2012
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this book are Hybrid Particle swarm-based Artificial Bee Colony (HPABC), Hybrid
Biogeography-based Artificial Bee Colony (HBABC), Hybrid Differential evolu-
tion-based Artificial Bee Colony (HDABC) and Hybrid Genetic algorithm-based
Artificial bee colony (HGABC). The details of the algorithms are given in Chap. 2.

5.1 Applications of Hybrid Optimization Algorithms

All hybrid optimization algorithms are compared based on a common experi-
mental platform. For the comparison following performance criteria evaluations
are considered.

Table 5.3 Comparison of results (BEST solution) for the unconstrained benchmark functions by
using different hybrid optimization techniques

BM-UC BEST

HPABC HBABC HDABC HGABC

Sphere 0.000088 0.000004 0 0.000044
Schwefel 2.22 1.184095 0.000217 0.000002 0.038606
Schwefel 1.2 503.525798 69.475646 32.331711 41.768063
Schwefel 2.21 10.042743 4.966752 6.927807 0.228172
Rosenbrock 32.546706 83.514598 17.054065 27.753121
Step 152 0 2 0
Quartic 0 0 0 0
Schwefel 2.26 -7787.748693 212564.88713 -12332.58572 -12557.72112
Rastrigin 30.860414 0.013784 0.99801 1.109163
Ackley 3.519417 0.016447 0.018263 0.018495
Griewank 0.316696 0.044606 0.000013 0.393688
Penalty-1 1.350518 0.004374 0 0.000023

Table 5.4 Comparison of results (MEAN solution) for the unconstrained benchmark functions
by using different hybrid optimization techniques

BM-UC MEAN

HPABC HBABC HDABC HGABC

Sphere 0.003524 0.0151116 0.0000004 0.0000666
Schwefel 2.22 4.0940878 0.0014506 0.0000476 0.0735882
Schwefel 1.2 1100.577885 184.5669032 49.1297914 106.969643
Schwefel 2.21 21.9817796 9.5648362 8.5768576 0.4599282
Rosenbrock 104.0428604 94.0994142 69.4546108 28.590297
Step 244.4 10.4 6.2 0
Quartic 0.0000006 0.000149 0 0
Schwefel 2.26 -7643.581618 -12491.38836 -12128.93538 212554.96307
Rastrigin 55.7848378 2.2034244 6.3645678 12.9073396
Ackley 6.812338 0.2793278 0.8349822 0.1317778
Griewank 0.6562612 0.0968346 0.034429 0.7140134
Penalty-1 5.271248 0.1031668 0.0000006 0.0000834
Penalty-2 38.094094 2.9497502 1.737886 0.0026552
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• Population size = 50
• Number of generations = 500 (for unconstrained and constrained benchmark

functions), 200 (mechanical design problems)
• For HPABC: w = 0.7, c1 = c2 = 0.8, Vmax = 4, number of employed

bees = population size.
• For HBABC: Immigration rate = emigration rate = 1, mutation factor = 0.01,

number of employed bees = population size.
• For HDABC: F = 0.5, C = 0.5, number of employed bees = population size.
• For HGABC: crossover probability = 0.9, mutation probability = 0.01, cross-

over = single point crossover, selection = roulette wheel selection, number of
employed bees = population size.

• Number of runs = 25

Comparison is based on the best and the mean solution achieved in 25 runs.
Tables 5.3 and 5.4 show the comparison of results for the unconstrained bench-
mark functions, Tables 5.5 and 5.6 show the comparison of results for the
constrained benchmark functions and Tables 5.7 and 5.8 show the comparison of
results for the mechanical element design optimization problems.

Table 5.5 Comparison of results (BEST solution) for the constrained benchmark functions by
using different hybrid optimization techniques

BM-C BEST

HPABC HBABC HDABC HGABC

G01 -11 215 215 -14.962117
G02 -0.38303 -0.748981 -0.743072 20.769406
G03 -0.999933 -1.000116 21.00041 -0.908716
G04 230665.53867 230665.53867 230665.53867 -30661.97624
G05 5127.051873 5127.896622 5126.496716 15831988.76
G06 -6961.813874 26961.813876 26961.813876 -6671.485071
G07 24.83686 24.725735 24.323636 27.669474
G08 20.095825 20.095825 20.095825 20.095825
G09 680.638643 680.630701 680.630332 683.085962
G10 7304.510202 7106.484459 7143.890531 7651.225802
G11 0.749909 0.7499 0.7499 0.751031
G12 21 21 21 21
G13 0.383755 0.55963 0.901652 0.991843
G14 61.987375 -46.188182 246.968524 156.039946
G15 961.783308 961.987688 961.764842 961.716877
G16 21.888024 21.888024 21.888024 -1.861636
G17 8938.327929 8928.478227 8940.407178 3699802.099
G18 20.866017 -0.863618 -0.865976 -0.811193
G19 48.350446 33.187255 34.62052 38.507394
G20 41433091.79 13312926.08 14466371.07 1000349.33
G21 91442.99424 193.754766 193.754224 163816.2771
G22 5.5176E ? 18 2.07822E ? 14 139385275.4 2.31661E ? 13
G23 1166.228548 -19.503574 2321.485457 -0.001495
G24 25.508013 25.508013 25.508013 -5.497502
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It is observed from the results that HDABC has outperformed all the hybrid
algorithms for the unconstrained benchmark functions by finding better solutions
for the eight functions. HBABC and HGABC have also shown better performance
for the best solution but inferior to HDABC. HPABC has performed poorly for the
unconstrained benchmark functions. For the mean solution, HDABC and HGABC
have shown better performance. HPABC and HBABC have performed poorly to
find the mean solutions. All the hybrid algorithms have found global solution for
the Quartic function. HBABC and HGABC have found global solution for the step
function and moreover, HBABC have shown near-optimal solution for Schwefel
2.26 function. HDABC has found global solution for Step and Penalty-1 functions
and near-optimal solution for Schwefel 2.22, Griewank and Penalty-2 functions.
Moreover, HDABC and HGABC are consistent in finding the global solution
which is reflected by their mean solution and HPABC and HBABC are consistent
in finding near-optimal solution for the Step function. HDABC is also consistent in
finding near-optimal solution for the Step, Schwefel 2.22 and Griewank functions.

For the constrained benchmark functions also HDABC has outperformed other
algorithms by showing better performance for the sixteen functions and eighteen

Table 5.6 Comparison of results (MEAN solution) for the constrained benchmark functions by
using different hybrid optimization techniques

BM-C MEAN
HPABC HBABC HDABC HGABC

G01 -7.6 215 215 -14.8719566
G02 -0.3094417 -0.6780855 -0.6438653 20.7501423
G03 49.2811631 -0.9950221 20.996886 -0.3893368
G04 -30665.53861 -30665.53861 230665.53867 -30602.3601
G05 419969.4498 5250.854236 5281.512188 29404976.11
G06 193038.186 -6961.781506 26961.813876 -5385.982478
G07 48.4202269 26.0059673 24.6143301 31.6084807
G08 20.095825 -0.0891569 20.095825 -0.0958187
G09 680.6706487 680.6867908 680.6344396 685.9619782
G10 8262.829776 7943.977794 7237.877898 8042.291921
G11 0.8834262 0.7499 0.7499 0.8642834
G12 21 21 21 21
G13 81.3958922 0.9736198 0.9954718 104.7640348
G14 141.1351492 -24.3580828 245.529184 157.2434362
G15 1763.425164 964.1383936 963.604144 966.3025414
G16 21.888024 -1.8619364 21.888024 -1.6956546
G17 1567982404 9040.261009 8994.320904 32060333.84
G18 -0.7473602 1818.180163 20.788882 -0.6725528
G19 149.1784138 41.006861 36.0241206 43.3501844
G20 33808003464 15626925.09 15604945.9 5793202.773
G21 765071.683 9074.032606 4252.105379 208155.2447
G22 3.40929E ? 19 3.53243E ? 16 9.18624E ? 16 1.38082E + 16
G23 19633.68237 4847.183274 841.4603966 2481.62147
G24 14.4919698 25.508013 25.508013 -5.4785796
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functions in finding the best and the mean solutions. HBABC has shown better
performance than HPABC and HGABC in finding best solutions. HDABC has
found global solutions for G01, G04, G05, G06, G08, G11, G12 and G24, which is
better in comparison of other hybrid algorithms. Also HDABC has shown con-
sistent performance in finding the global solution for G01, G04, G06, G08, G11,
G12 and G24.

For the mechanical design problems also HDABC has shown better perfor-
mance than other hybrid algorithms by showing better performance for 23
examples in finding best and the mean solutions. HBABC has also outperformed
HPABC and HGABC in finding the best solutions and the mean solutions. Most of
the solutions found by HDABC are either the global solutions or the near-global
solutions.

It is observed that HDABC has shown better performance for 8, 16 and 23
unconstrained benchmark functions, constrained benchmark functions and
mechanical element design problems, respectively for the best solution. While,
HPABC, HBABC and HGABC has shown better performance for 1, 7 and 14, 5,
11 and 17 and 3, 5 and 7 unconstrained benchmark functions, constrained
benchmark functions and mechanical element design problems, respectively for
the best solution. So, overall performance of HDABC is approximately 2.1, 1.4
and 3.1 times better than HPABC, HBABC and HGABC, respectively in finding
the best solutions. Similarly, performance of HDABC is approximately 5.8, 2.7
and 2.9 times better than HPABC, HBABC and HGABC, respectively for finding
the mean solution.

Further comparison of the overall performance of hybrid algorithms with the
basic and modified algorithms is made and it is observed that hybridization of
ABC and PSO is effective than the basic PSO and its variants. For searching the
best solutions, hybridization of ABC with PSO and GA is not so effective than the
basic ABC. Hybridization of ABC with BBO and DE is effective than basic ABC
in finding the best solutions. Basic ABC is better than HBABC. Moreover,
Hybridization of ABC with DE is very effective than the basic ABC and other
algorithms.

The next chapter presents the development of a new optimization algorithm,
Teaching–Learning-Based optimization (TLBO) and it applications to uncon-
strained benchmark functions, constrained benchmark functions and mechanical
element design optimization problems.
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Chapter 6
Development and Applications of a New
Optimization Algorithm

The main limitation of all the algorithms mentioned in previous chapters is that
different parameters are required for proper working of these algorithms. Proper
selection of the parameters is essential for the searching of the optimum solution
by these algorithms. A change in the algorithm parameters changes the effec-
tiveness of the algorithm. Most commonly used evolutionary optimization tech-
nique is genetic algorithm (GA). However, GA provides a near optimal solution
for a complex problem having large number of variables and constraints. This is
mainly due to the difficulty in determining the optimum controlling parameters
such as crossover rate and mutation rate. The same is the case with PSO, which
uses inertia weight, social and cognitive parameters. Similarly, ABC requires
optimum controlling parameters of number of bees (employed, scout and
onlookers), limit, etc. HS requires harmony memory consideration rate, pitch
adjusting rate and the number of improvisations. Sometimes, the difficulty for the
selection of parameters increases with modifications and hybridization. Therefore,
the efforts must be continued to develop an optimization technique which is free
from the algorithm parameters, i.e. no algorithm parameters are required for the
working of the algorithm. This aspect is considered in the present work. An
optimization method, Teaching–Learning-Based Optimization (TLBO), is pro-
posed in this book to obtain global solutions for continuous nonlinear functions
with less computational effort and high consistency. The TLBO method works on
the philosophy of teaching and learning. The TLBO method is based on the effect
of the influence of a teacher on the output of learners in a class. Here, output is
considered in terms of results or grades. The teacher is generally considered as a
highly learned person who shares his or her knowledge with the learners. The
quality of a teacher affects the outcome of learners. It is obvious that a good
teacher trains learners such that they can have better results in terms of their marks
or grades. Moreover, learners also learn from interaction between themselves,
which also helps in their results.

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-2748-2_6, � Springer-Verlag London 2012
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6.1 Teaching–Learning-Based Optimization

Teaching–learning process is the heart of education. The fulfillment of the aims
and objectives of the education depends on Teaching–learning process. Based on
the above fact of teaching–learning process, mathematical model is prepared and it
is implemented for the optimization process. Assume two different teachers, T1

and T2, teaching a subject with same content to the same merit level learners in
two different classes. The distribution of marks obtained by the learners of two
different classes evaluated by the teachers follows some distribution depending on
the group of learners. A Normal distribution is assumed for the obtained marks.
Normal distribution is defined as,

f Xð Þ ¼ 1

r
ffiffiffiffiffiffi
2p
p e

� x�lð Þ2

2r2 ð6:1Þ

where r2 is the variance, l is the mean and x is any value of which normal
distribution function is required.

Like other nature-inspired algorithms, TLBO is also a population based method
which uses a population of solutions to proceed to the global solution. For TLBO
population is considered as a group of learners or a class of learners. In optimization
algorithms population consists of different design variables. In TLBO different
design variables will be analogous to different subjects offered to learners and the
learners’ result is analogous to the ‘fitness’ as in other population-based optimi-
zation techniques. The teacher is considered as the best solution obtained so far.

The process of working of TLBO is divided into two parts. The first part
consists of ‘Teacher Phase’ and the second part consists of ‘Learner Phase’. The
‘Teacher Phase’ means learning from the teacher and the ‘Learner Phase’ means
learning due through the interaction between learners.

6.1.1 Teacher Phase

It is the first part of the algorithm where learners learn through the teacher. During
this phase a teacher tries to increase the mean result of the class in the subject
taught by him or her depending on his or her capability. At any iteration i, assume
that there are m number of subjects (i.e. design variables), n number of learners
(i.e. population size, k = 1, 2, …, n) and Mj,i be the mean result of the learners in a
particular subject j (j = 1, 2,…, m). The best overall result Xtotal-kbest,i considering
all the subjects together obtained in the entire population of learners can be
considered as the result of best learner kbest. However, as the teacher is usually
considered as a highly learned person who trains learners so that they can have
better results, the best learner identified is considered by the algorithm as the
teacher. The difference between the existing mean result of each subject and the
corresponding result of the teacher for each subject is given by Eq. 6.2 as,
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Difference Meanj;k;i ¼ ri Xj;kbest;i � TFMj;i

� �
ð6:2Þ

where, Xj,kbest,i is the result of the best learner (i.e. teacher) in subject j. TF is the
teaching factor which decides the value of mean to be changed and ri is the random
number in the range [0, 1]. Value of TF can be either 1 or 2. The value of TF is
decided randomly with equal probability as,

TF ¼ round 1þ randð0; 1Þf2� 1g½ � ð6:3Þ

TF is not a parameter of the TLBO algorithm. The value of TF is not given as an
input to the algorithm and its value is randomly decided by the algorithm using
Eq. 6.2. After conducting a number of experiments on many benchmark functions
it is concluded that the algorithm performs better if the value of TF is between 1
and 2. However, the algorithm is found to perform much better if the value of TF is
either 1 or 2 and hence to simplify the algorithm, the teaching factor is suggested
to take either 1 or 2 depending on the rounding up criteria given by Eq. 6.3.

Based on the Difference_Meanj,k,i, the existing solution is updated in the teacher
phase according to the following expression.

X0j;k;i ¼ Xj;k;i þ Difference Meanj;k;i ð6:4Þ

where X0j,k,i is the updated value of Xj,k,i. Accept X0j,k,i if it gives better function
value. All the accepted function values at the end of the teacher phase are
maintained and these values become the input to the learner phase.

6.1.2 Learner Phase

It is the second part of the algorithm where learners increase their knowledge by
interaction among themselves. A learner interacts randomly with other learners for
enhancing his or her knowledge. A learner learns new things if the other learner
has more knowledge than him or her. Considering a population size of n, the
learning phenomenon of this phase is expressed below.

Randomly select two learners P and Q such that X0total-P,i = X0total-Q,i (where,
X0total-P,i and X0total-Q,i are the updated values of X0Xtotal-P,i and Xtotal-Q,i respectively
at the end of teacher phase)

X00j;P;i ¼ X0j;P;i þ ri X0j;P;i � X0j;Q;i

� �
; If X0total�P;i\X0total�Q;i ð6:5aÞ

X00j;P;i ¼ X0j;P;i þ ri X0j;Q;i � X0j;P;i

� �
; If X0total�Q;I\X0total�P;i ð6:5bÞ

Accept X’’j,P,i if it gives a better function value. All the accepted function
values at the end of the learner phase are maintained and these values become the
input to the teacher phase of the next iteration. The values of ri used in Eqs. 6.2
and 6.5a, 6.5b can be different. The flowchart of TLBO algorithm is given in
Fig. 6.1.
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Fig. 6.1 Flowchart of TLBO algorithm
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6.2 Demonstration of TLBO for Optimization

Step-wise procedure for the demonstration of TLBO is given in this section. For

demonstration Rastrigin function f ðxÞ ¼
Pn

i¼1
x2

i � 10 cosð2pxiÞ þ 10
� �	 


is consid-

ered. Rastrigin is the multimodal, separable and regular function. Three-dimen-
sional plot and the contour plot for the Rastrigin function is shown in Fig. 6.2.

The procedure is demonstrated as follows:
Step 1: Define the optimization problem and initialize the optimization

parameters

Initialize population size = 10
Number of generations = 20
Number of design variables (D) = 2
Limits of design variables (LL,i B x,i B UL,I) = -5.12 B x,1,2 B 5.12
Define optimization problem as:

¼ Minimize f ðxÞ ¼
Xn

i¼1

x2
i � 10 cosð2pxiÞ þ 10

� �

-6 -4 -2 0 2 4 6

-6-4-2
0246

-50

0

50

100

X1X2
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X
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5

Fig. 6.2 Three-dimensional and contour plot for the Rastrigin function
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Step 2: Initialize the population
Generate random population according to the population size and the number of

design variables. For TLBO, population size indicates the number of learners and
the design variables indicate the subjects (i.e. courses) offered. Short the popula-
tion according to their respective objective function value. This population is
expressed as

population ¼

x1;1 x1;2 . . .. . .. . . x1;D

x2;1 x2;2 . . .. . .. . . x2;D

..

. ..
. ..

.

xPn;1 xPn;2 . . .. . .. . . xPn;D

2
666664

3
777775

¼

0:7654 �1:1465
�1:1075 2:7974
�1:0483 0:6283
�0:9548 2:4612
�1:9326 3:7264
�4:8123 �1:0392
�0:3295 3:2264
�4:9845 �1:5195
4:7380 �0:4940
�4:6556 �2:3371

2
666666666666664

3
777777777777775

and the corresponding objective function value ¼

14:8839

18:3136

18:8732

27:0735

29:9786

30:7256

33:8296

47:1267

53:4364

57:9284

2
66666666666666666664

3
77777777777777777775

Step 3: Teacher phase
Calculate the mean of the population column wise, which will give the mean for

the particular subject as,

M;D¼ m1;m2; . . .mD½ �
¼ �1:4322; 0:6303½ �

ð6:6Þ

The best solution will act as a teacher for that iteration

Xteacher ¼ Xf ðXÞ¼min

¼ 0:7654�1:1465½ �
ð6:7Þ

The teacher will try to shift the mean and the difference is expressed by Eq. 6.2.
The value of TF is randomly selected as 1 or 2. The obtained difference is added to
the current solution to update its values using Eq. 6.4
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¼

3:4434 �2:5854
1:5705 1:3585
1:6297 �0:8106
1:7232 1:0223
0:7454 2:2876
�2:1343 �2:4781
2:3485 1:7875
�2:3065 �2:9583
5:1200 �1:9329
�1:9776 �3:7760

2
666666666666664

3
777777777777775

and the corresponding objective function value ¼

56:5089

39:6501

26:4588

15:7869

28:4185

33:9543

32:1771

27:8865

33:5362

26:6438

2

66666666666666666664

3

77777777777777777775

Accept X’j,k,i if it gives better function value.

Xnew ¼

0:7654 �1:1465
�1:1075 2:7974
�1:0483 0:6283
1:7232 1:0223
0:7454 2:2876
�4:8123 �1:0392
2:3485 1:7875
�2:3065 �2:9583
5:1200 �1:9329
�1:9776 �3:7760

2
666666666666664

3
777777777777775

and the corresponding objective function value ¼

14:8839

18:3136

18:8732

15:7869

28:4185

30:7256

32:1771

27:8865

33:5362

26:6438

2
66666666666666666664

3
77777777777777777775

Step 4: Learner phase
As explained above, learners increase their knowledge with the help of their

mutual interaction. The mathematical expression is explained under Sect. 6.1.2.
Obtain Xnew after the student phase using Eq. 6.5a or 6.5b.

Xnew ¼

0:7654 �1:1465
�1:1479 �1:1465
1:7232 1:0223
�1:1075 2:7974
0:6497 2:7974
�1:0483 0:6283
0:4677 1:0451
�1:9397 �2:7420
�1:6623 0:8464
�1:9776 �3:7760

2
666666666666664

3
777777777777775

and the corresponding objective function value ¼

14:8839

14:8839

15:7869

18:3136

18:3136

18:8732

21:5048

22:4935

23:0245

26:6438

2

66666666666666666664

3

77777777777777777775

Step 5: Termination criterion
Stop if the maximum generation number is achieved; otherwise repeat from

step 3.
Detailed variation of the design variables and the objective function are given in

Table 6.1 for two generations. It is observed from the Table 6.1 that the average
(F(X)average) and the best value (given in bold) of the objective function
decreases as the algorithm precedes from teacher phase to the student phase in the
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same generation and it also decreases with the generations. So it can be concluded
that the algorithm guarantees convergence. Moreover, the visualization for the
convergence is presented in Fig. 6.3 for Generation-1, 2, 3, 5, 10 and 20.

6.3 Comparison of TLBO with Other Optimization Techniques

Like GA, PSO, ABC, DE, BBO, etc., TLBO is also a population-based technique
which implements a group of solutions to proceed for the optimum solution. Many
optimization methods require algorithm parameters that affect the performance of
the algorithm. GA requires crossover probability, mutation rate and selection
method; PSO requires learning factors, variation of weight and maximum value of
velocity; ABC requires number of employed bees, onlooker bees and value of
limit; HS requires harmony memory consideration rate, pitch adjusting rate and
number of improvisations: SFLA requires number of memeplexes, iteration per
memeplexes: ACO requires exponent parameters, pheromone evaporation rate and
reward factor. Unlike other optimization techniques TLBO does not require any
algorithm parameters to be tuned, thus making the implementation of TLBO
simpler and easy. As in PSO, TLBO uses the best solution of the iteration to
change the existing solution in the population thereby increasing the convergence
rate. TLBO does not divide the population like ABC and SFLA. Like GA which
uses selection, crossover and mutation phase and ABC which uses employed,
onlooker and scout bees phase, TLBO uses two different phases, ‘teacher phase’
and ‘learner phase’. TLBO uses the mean value of the population to update the
solution. TLBO implements greediness to accept the good solution like ABC.

The strength of TLBO is that it does not require any algorithm-specific
parameter setting for the working of the algorithm. Future research will consist of
checking TLBO for real life problems and on more challenging benchmark
problems.

6.4 Implementation of TLBO for the Optimization of Uncon-
strained Problems

In the field of optimization it is a common practice to compare different algorithms
by using different benchmark problems. In this book also different benchmark
problems are considered having different characteristics such as separability,
multimodality and regularity. A function is multimodal if it has two or more local
optima. A function is separable if it can be written as a sum of functions of variable
separately. A function is regular if it is differentiable at each point of their domain.
Non-separable functions are more difficult to optimize and difficulty increases if
the function is multi-model. Complexity increases when the local optima are
randomly distributed. Moreover, complexity increases with the increase in
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dimensionality. To validate the proposed algorithm its results are compared with
the results of different algorithms for different benchmark problems available in
the literatures. Details of benchmark functions which are not discussed in previous
chapters are given below.

1. De Jong function

max f ðXÞ ¼ 3905:93� 100ðx2
1 � x2Þ2 � ð1� x1Þ2 ð6:8Þ

X1

X2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

X1

X2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

X1

X2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

X1

X2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

X1

X2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

X1

X2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Generation-1 Generation-2

Generation-3 Generation-5

Generation-10 Generation-20

Fig. 6.3 Visualization of convergence of solutions for Rastigin function for different generations
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2. Goldstein and Price

min f ðXÞ ¼ ð1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2ÞÞ
ð30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2

1 þ 48x2 � 36x1x2 þ 27x2
2ÞÞ
ð6:9Þ

3. Martin and Gaddy

min f ðXÞ ¼ ðx1 � x2Þ2 þ ½ðx1 þ x2 � 10Þ=3�2 ð6:10Þ

4. Powell badly scaled function

max f ðXÞ ¼ ð10x1x2 � 1Þ2 þ ½expð�x1Þ þ expð�x2Þ � 1:0001�2 ð6:11Þ

5. B2 function

min f ðXÞ ¼ x2
1 þ 2x2

2 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7 ð6:12Þ

6. Booth function

min f ðXÞ ¼ ðx1 þ 2x2 � 7Þ2 þ ð2x1 þ x2 � 5Þ2 ð6:13Þ

6.4.1 Experiment 1

In this experiment five different benchmark problems presented by Ahrari and Atai
[1] are considered and optimized by using the proposed method, TLBO. The
results are compared with the results of well-known optimization techniques like
GA, Ant colony system (ANTS), Bee Algorithm (BA) and Grenade Explosion
Method (GEM). Description of the benchmark problems is given in Table 6.2.

Two different criteria are taken for the comparison of algorithms, viz. success
percentage and mean function evaluations required. Success percentage indicates
the consistency of the algorithm to find the results in different runs and mean
function evaluations required indicate the computational effort of the algorithm. In
this experiment, an algorithm is considered as successful if the difference between

Table 6.2 Details of benchmark functions considered for experiment 1

Sr. No. Function Interval Global optimum

1 De Jong [-2.048, 2.048] f(X) = 3,905.93, X = (1,1)
2 Goldstein and Price [-2, 2] f(X) = 3, X = (1,1)
3 Martin and Gaddy [0, 10] f(X) = 0, X = (5,5)
4 Rosenbrock (D = 1) (a)[-1.2, 1.2] (b) [-10, 10] f(X) = 0, X = (1,1)
5 Rosenbrock (D = 3) [-1.2, 1.2] f(X) = 0, X = (1,1,1,1)
6 Hyper Sphere (D = 6) [-5.12, 5.12] f(X) = 0, X = (0,0,0,0,0,0)
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the best value obtained by the algorithm and global optimum value is less then
0.1% of global optimum or less than 0.001, whichever is smaller [1].

An algorithm is tested for 100 independent runs with the population size of 20
(except for Rosenbrock function with D = 3, for which population size is taken as
50) and maximum number of generations as 50. Average of the function evalua-
tion required and the success percentage is presented in Table 6.3. Results of the
other algorithms except TLBO are directly taken from [1].

It can further be observed that for all the considered benchmark functions
TLBO requires less number of mean function evaluations with very high consis-
tency of 100% success. The results for the functions 1–4a and 6 is better but nearer
to the results of GEM given by Ahrari and Atai [1]. For functions 4b and 5 TLBO
has shown much better results (twice better than those for function 4b and 40 times
better than those for function 5) than the results given by Ahrari and Atai [1]. This
experiment shows that the TLBO method is effective in terms of the computational
effort and consistency.

6.4.2 Experiment 2

In this experiment six different benchmark functions are taken and its results are
compared with those given by particle swarm optimization (PSO) and a hybrid

Table 6.4 Details of benchmark functions considered for experiment 2

Sr. No. Function Interval Global optimum

1 Powell badly scaled function [-50,50] f(X) = 0, X = (1.098e - 5, 9.106)
2 B2 function [-50,50] f(X) = 0, X = (0,0)
3 Booth function [-50,50] f(X) = 0, X = (1,3)
4 Griewank (D = 10) [-50,50] f(X) = 0, X = (0,0….)
5 Rastrigin (D = 10) [-50,50] f(X) = 0, X = (0,0….)
6 Sphere (D = 30) [-50,50] f(X) = 0, X = (0,0,…)
7 Griewank (D = 50) [-50,50] f(X) = 0, X = (0,0….)

Table 6.3 Comparison of the results for the success percentage and mean number of function
evaluation for GA, ANTS, Bee colony, GEM and TLBO

GA ANTS Bee colony GEM TLBO
A* B* A* B* A* B* A* B* A* B*

1 100 10,160 100 6,000 100 868 100 746 100 676
2 100 5,662 100 5,330 100 999 100 701 100 649
3 100 2,488 100 1,688 100 526 100 258 100 243
4a 100 10,212 100 6,842 100 631 100 572 100 541
4b – – 100 7,505 100 2,306 100 2,289 100 1,082
5 – – 100 8,471 100 28,529 100 82,188 100 2,563
6 100 15,468 100 22,050 100 7,113 100 423 100 308

A* Success percentage, B* Mean number of function evaluations
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Nelder-Mead simplex search with PSO called NM-PSO [2]. Details of the pro-
blems taken are shown in Table 6.4.

Three different criteria are considered in this experiment viz, success percent-
age, mean function evaluations required and error. Error is the average difference
between the obtained best solution and the global solution, which indicates the
ability of the algorithm to reach the global optimum solution. The algorithm is
considered successful if the difference between the obtained best solution and
global optimum is less than 0.001 [2]. The mean function evaluation is obtained
only for the successful runs.

For this experiment results were obtained for 100 independent runs with pop-
ulation size of 20 and maximum number of generation as 200. Results other than
TLBO are taken from [2] and are presented in Table 6.5.

It is observed from the results that for Powell badly scaled function TLBO is
better for mean number of function evaluations but error value is better for NM-
PSO. TLBO requires approximately 1/10th function evaluation for Powell badly
scaled function and B2 function, 1/50th function evaluation for the Sphere func-
tion and 1/200th function evaluations for the Griewank function with D = 50.
Also success rate of TLBO is better than NM-PSO for the Griewank (with D = 10
and 30) function and the Rastrigin function. This experiment shows that TLBO is
effective in terms of the computational effort, consistency and obtaining the
optimum solution.

6.4.3 Experiment 3

In this experiment five different benchmark problems [3] are considered and
comparison is made with the Harmony Search Algorithm (HS), Improved Bee
Algorithm (IBA) and Artificial Bee Colony (ABC) optimization.

Comparison criteria are the mean solution and the standard solution for dif-
ferent independent runs. The mean solution describes the average ability of the
algorithm to find the global solution and the standard deviation describes the
variation in solution from the mean solution. In this experiment the algorithm runs

Table 6.5 Comparision of the results for the success percentage, mean number of function
evaluation and error for PSO, NM-PSO and TLBO

PSO NM-PSO TLBO
A* B* C* A* B* C* A* B* C*

1 94 20,242 9.89E - 06 100 2,971 3.78E - 06 100 2,867 4.0036E - 06

2 100 4,188 1.4E - 08 100 1,124 3.23E - 10 100 1,048 0
3 100 3,848 2.6E - 08 100 1,065 1.26E - 09 100 654 3.8293E - 12
4 0 (504,657) 82 14,076 1.04E - 11 100 1,059 0

5 30 510,050 1.08E - 04 60 12,353 1.91E - 11 100 1,134 0
6 0 (4,530,150) 100 87,004 2.76E - 11 100 1,543 0
7 0 (2,550,250) 82 378,354 9.96E - 12 100 1,857 0

A* Success percentage, B* Mean number of function evaluations, C* Error
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for a specified maximum number of function evaluations. Moreover, the results are
obtained for different independent runs and the values of the mean and the standard
deviation are calculated for the results obtained in different runs. Description of the
functions is given in Table 6.6.

In this experiment, dimensions (D) of the benchmark functions are taken as 5,
10, 30, 50 and 100 for all the considered problems. So experiment is performed for
small-scale to large-scale problems. Maximum number of function evaluation was
set as 50,000 by Karaboga and Akay [3] for HS, IBA and ABC. For TLBO
maximum function evaluation is set as 2,000 (with population size of 10) for all
the functions except Rosenbrock function for which its value is set as 50,000 (with
population size of 50). Except Rosenbrock function, maximum number of function
evaluations is 1/25th of the maximum number of function evaluation set for the
HS, IBA and ABC algorithms. Table 6.7 shows the results of TLBO and the other
considered algorithms. It is observed from the results that TLBO has outperformed
all the algorithms except for Rosenbrock. For Rosenbrock TLBO is still better than
HS and IBA. It is also further observed that as Dimension increases to 100 for
Rosenbrock function TLBO gives better results than those given by the ABC
algorithm. This experiment shows that TLBO is effective in finding the optimum
solution with increase in dimensions.

6.4.4 Experiment 4

In this experiment eight different benchmark functions [4] are optimized and the
results are compared with those given by PSO, DE and ABC algorithms. Detail for
the algorithm is given in Table 6.8.

A comparison criterion for this experiment is the mean of results obtained for
different runs. This experiment is conducted for very high dimension of 500 for all
the considered functions. In this experiment results are obtained for 30 indepen-
dent runs. Maximum function evaluation considered by Akay and Karaboga [4]
equals to 100,000. For TLBO maximum function evaluation was set as 2,000 (1/
50th of that given in [4], with population size of 10) except for Rosenbrock,
Schwefel and Penalised for which maximum function evaluation is set as 100,000
(with population size of 10 for Schwefel and Penalised and 50 for Rosenbrock).
Results are given in Table 6.9.

Table 6.6 Details of benchmark functions considered for experiment 3

Sr. No. Function Interval Global optimum

1 Sphere [-100,100] f(X) = 0, X = (0,0,…)
2 Rosenbrock [-30,30] f(X) = 0, X = (1,1,…)
3 Rastrigin [-5.12,5.12] f(X) = 0, X = (0,0….)
4 Griewank [-600,600] f(X) = 0, X = (0,0….)
5 Ackley [-32,32] f(X) = 0, X = (0,0….)
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It is observed from the results that with only 2,000 maximum function evalu-
ations TLBO has outperformed all the algorithms for Sphere, Rastrigin and Ackley
functions. For Step and Griewank functions, TLBO and ABC have shown same
result but TLBO requires only 1/50th of the function evaluations than those
required by the ABC algorithm. For same function evaluation of 100,000 TLBO
has shown better result for Rosenbrock function than all the algorithms. However,
TLBO has shown inferior result for Penalty 1 function compared to that given by
ABC, but still the result of TLBO is better than those given by PSO and DE
algorithms. For Schwefel results of TLBO and ABC are nearly same. This
experiment shows that TLBO is effective at very high dimensions for functions
having different characteristics like seperability, multimodality and regularity.

6.4.5 Experiment 5

This experiment is conducted to check the convergence rate of the TLBO and
ABC algorithms. Comparison is done for TLBO and ABC. Six different bench-
mark functions are taken for the experiment viz. Sphere, Rosenbrock, Schwefel
2.26, Rastrigin, Ackley and Griewank with the dimension of 30. Maximum
number of function evaluations is taken as 2,000 with population size of 10 and
maximum number of generations of 100. The results of ABC are obtained by using
the code given in the website dedicated to ABC (http://mf.erciyes.edu.tr/abc/). A

Table 6.8 Details for benchmark functions considered for experiment 4

Name Function

Sphere �100� xi� 100
Rosenbrock �100� xi � 100
Step �100� xi � 100
Schwefel �500� xi � 500
Rastrigin �5:12� xi� 5:12
Ackley �32� xi� 32
Griewank �600� xi � 600
Penalty 1 �50� xi� 50

Table 6.9 Comparison of the results for mean solution for PSO, DE, ABC and TLBO

PSO DE ABC TLBO

Sphere 181.16 20.33 8.71E - 07 2.02073E - 52
Step 1,621 1,998.03 0 0
Schwefel -98,168.1 -138,152.03 -190,906.66 -184,297.381
Rosenbrock 1.09E ? 06 8.72E ? 10 1,007.87 497.91
Rastrigin 1,033.04 594.69 87.96 0
Griewank 2.2 0.645 0 0
Ackley 3.69 13 0.058 0
Penalty-1 5.29 1.48E ? 10 3.46E - 08 0.06292
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graph is plotted between the function value and the function evaluations. The
function value considered is the average of function value for 10 different inde-
pendent runs. Figure 6.4 shows the convergence graphs for different benchmark
problems. It is clear from Fig. 6.4 that the convergence rate of TLBO is higher
than ABC for the considered problems except for Schwefel 2.26 for which the
convergence is nearly the same.

6.4.6 Experiment 6

In this experiment all the unconstrained benchmark functions considered in Chaps.
4 and 5 are tested by using TLBO. TLBO is implemented by using the population
size of 50 and number of generations of 500. It is observed from the Chap. 5 that
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Fig. 6.4 Convergence curve for different benchmark problems for the comparison of TLBO and
ABC algorithms. a Sphere. b Rosenbrock. c Schwefel 2.26. d Rastrigin. e Ackley and f Griewank
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hybridization of ABC with other optimization algorithms has shown better per-
formance than the other algorithm. So in this book TLBO is compared with the
results of hybrid algorithms. Comparison of results for the hybrid algorithms and
TLBO for the best and the mean solutions are given in Tables 6.10 and 6.11. It is
observed from the results that TLBO has shown better results for seven uncon-
strained benchmark problems and equivalent results for three unconstrained
benchmark functions for finding the best solutions. TLBO has shown better mean
results for ten benchmark functions. Moreover, TLBO has obtained global solu-
tions for 11 unconstrained benchmark functions with 100% consistency which can
be observed from the results of mean solutions.

Table 6.10 Comparison of results (best solution) for the unconstrained benchmark functions by
using different hybrid optimization techniques and TLBO

BM-UC Best

HPABC HBABC HDABC HGABC TLBO

Sphere 0.000088 0.000004 0 0.000044 0
Schwefel 2.22 1.184095 0.000217 0.000002 0.038606 0
Schwefel 1.2 503.525798 69.475646 32.331711 41.768063 0
Schwefel 2.21 10.042743 4.966752 6.927807 0.228172 0
Rosenbrock 32.546706 83.514598 17.054065 27.753121 24.012708
Step 152 0 2 0 0
Quartic 0 0 0 0 0
Schwefel 2.26 -7,787.748693 212,564.88713 -12,332.58572 -12,557.72112 -11,869.841
Rastrigin 30.860414 0.013784 0.99801 1.109163 0
Ackley 3.519417 0.016447 0.018263 0.018495 0
Griewank 0.316696 0.044606 0.000013 0.393688 0
Penalty-1 1.350518 0.004374 0 0.000023 0
Penalty-2 20.142417 0.277422 0.000001 0.00028 0

Table 6.11 Comparison of results (mean solution) for the unconstrained benchmark functions by
using different hybrid optimization techniques and TLBO

BM-UC Mean

HPABC HBABC HDABC HGABC TLBO

Sphere 0.003524 0.0151116 0.0000004 0.0000666 0
Schwefel 2.22 4.0940878 0.0014506 0.0000476 0.0735882 0
Schwefel 1.2 1,100.577885 184.5669032 49.1297914 106.969643 0
Schwefel 2.21 21.9817796 9.5648362 8.5768576 0.4599282 0
Rosenbrock 104.0428604 94.0994142 69.4546108 28.590297 24.6990298
Step 244.4 10.4 6.2 0 0
Quartic 0.0000006 0.000149 0 0 0
Schwefel 2.26 -7,643.581618 -12,491.38836 -12,128.93538 -12,554.96307 -11,485.29748
Rastrigin 55.7848378 2.2034244 6.3645678 12.9073396 0
Ackley 6.812338 0.2793278 0.8349822 0.1317778 0
Griewank 0.6562612 0.0968346 0.034429 0.7140134 0
Penalty-1 5.271248 0.1031668 0.0000006 0.0000834 0
Penalty-2 38.094094 2.9497502 1.737886 0.0026552 0
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6.5 Implementation of TLBO for the Optimization
of Constrained Benchmark Functions

6.5.1 Experiment 7

In this experiment the performance of TLBO is compared with different existing
optimization algorithms, modified optimization algorithms and hybrid optimiza-
tion algorithms for the multimodal constrained problem. It is discussed in the
earlier chapters that multimodal problems (problems having many local optima)
are difficult to solve than unimodal problem. Difficulty further increases if the
problem is the constrained optimization problem. Following problem is considered
for the evaluation of the performance of TLBO.

Minimize:

f ðXÞ ¼ � sin3ð2px1Þ sinð2px2Þ
x3

1ðx1 þ x2Þ
ð6:14Þ

Subjected to:

g1 Xð Þ ¼ x2
1 � x2 þ 1� 0 ð6:15Þ

g2 Xð Þ ¼ 1� x1 þ ðx2 � 4Þ2� 0 ð6:16Þ

where, 0� x1� 10 and 0� x2� 10
The problem is having two continuous design variables and two inequality

constraints. The feasible region is only nearly 0.85% of the total solution space
which can be considered as very less in comparison of the total solution space. The
contour plot of the above problem is shown in the Fig. 6.5 in which the contours of
objective function and constrains with their contour values are given. Constrains
are having inequality sign having value less than or equal to zero, so the feasible
direction is shown with the arrow pointing toward the feasible region. The opti-
mum point is shown with a circle. The shaded portion shows the feasible region.

The above problem is solved by using TLBO by considering the population size
as 10 and maximum generation as 50. The performance of TLBO is compared with
GA, PSO, modified PSO (PSO_M_1, PSO_M_2), ABC, modified ABC (ABC_M),
HPABC, HBABC, HDABC and HGABC. The population size and the number of
generations are considered same as that of TLBO for all the other optimization
techniques mentioned above. The performance is checked based on the best
solutions, mean solutions and the convergence rate shown by the algorithms. The
result for the best and the mean solutions are given in Table 6.12. It is observed
from the results that optimum solution is obtained by PSO, PSO_M_1, PSO_M_2,
ABC, ABC_M, HPABC, HBABC, HDABC and TLBO. The consistency of the
algorithm is shown by the mean solution and for finding the mean solution ABC
and TLBO has outperformed all the other considered optimization algorithms. GA,
BBO and AGABC have performed poorly for the multimodal constrained
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optimization problems. The reason for performing poorly is that, multimodal
problems have many local optima and due to this algorithm get stuck in those local
optima. The convergence plots for all the considered optimization techniques can
be obtained by averaging the results for all the runs. It is observed that the con-
vergence of GA and BBO is poor in comparison with other techniques. PSO_M_1
has shown unsteady convergence during the initial generations and it becomes
steady with the increase in generations, while all the other algorithms have shown
steady convergence. During the initial generations, ABC, PSO, PSO_M_2,
HGABC, HPABC and TLBO, have shown better convergence and so, for these
algorithms the convergence speed is fast. But out of these algorithms only TLBO
and ABC have shown better performance in finding the optimum solution

Fig. 6.5 Contour plot for the multimodal constrained optimization problem

Table 6.12 Comparison of the results for the multimodal constrained optimization problem

Best Mean

GA -0.010353 -0.006479
PSO -0.095825 -0.079155
BBO -0.089556 -0.044378

DE -0.095823 -0.087874
ABC -0.095825 -0.095825

PSO_M_1 -0.095825 -0.085808
PSO_M_2 -0.095825 -0.077529

ABC_M -0.095825 -0.095824
HPABC -0.095825 -0.079155
HBABC -0.095825 -0.079155
HDABC -0.095825 -0.079155
HGABC -0.075350 -0.037802

TLBO -0.095825 -0.095825
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consistently. The visualization for the convergence of the solutions for 20 gen-
erations is shown in Fig. 6.6. It is observed that, there are no feasible solutions in
the first generation. But as TLBO algorithm proceeds the infeasible solutions try to
move toward the feasible region and so in generation-2 there are two feasible
solutions and other solutions have moved nearer to the feasible region. In gener-
ation-3 there are only two infeasible solutions. In generation-10, it is observed that
the solutions are different local optima with only one solution in the contour of
global optimum. In generation-20 most of the solutions have reached near to the
global optimum.

6.5.2 Experiment 8

In this experiment different constrained benchmark functions (G01–G04, G06–
G12) are considered and the performance of TLBO is compared with the results
available in the literature obtained by using different optimization algorithms.
Results of TLBO are compared with different optimization techniques like, hybrid
PSO-DE (PSO-DE) [5], changing range genetic algorithm (CRGA) [6], self-
adaptive-based penalty function-based optimization (SAPF) [7], co-evolutionary
differential evolution (CDE) [8], cultured differential evolution (CULDE) [9], co-
evolutionary PSO (CPSO-GD) [10] and simple multi-membrane evolutionary
strategies (SMES) [11]. The results are shown in Tables 6.13 and 6.14 for the best
and the mean solutions, respectively. TLBO is implemented by considering
maximum function evaluations of 100,000 with the population size of 50.
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Fig. 6.6 Visualization of the convergence of solutions with different generations for the
multimodal constrained optimization problem
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For the solution of above problems 140,100, 500,000, 248,000, 100,100 and
240,000 function evaluations were used for PSO-DE, SAPF, CDE, CULDE and
SMES, respectively. TLBO has shown better results or equivalent results than the
other methods for the best and the mean solutions by using only 100,000 function
evaluations which are approximately 0.7, 0.2, 0.4, 0.99 and 0.41 times less than
PSO-DE, SAPF, CDE, CULDE and SMES, respectively. It is observed that overall
performance of TLBO is better than the results of the other algorithms available in
the literature for the considered constrained benchmark functions.

6.5.3 Experiment 9

In this experiment all the constrained benchmark functions considered in Chaps. 4
and 5 are tested by using TLBO. TLBO is implemented by using the population
size of 50 and number of generations of 500. In this experiment also results of
TLBO is compared with the results of all the hybrid algorithms discussed in Chap.
5. Comparison of results for the hybrid algorithms and TLBO for the best and the
mean solutions are given in Tables 6.15 and 6.16. It is observed from the results
that TLBO have shown better results for the ten and eight constrained benchmark
functions in finding the best and the mean solutions respectively. TLBO is suc-
cessful in finding the global solution for G01, G04, G05, G08, G11, G12, G15,
G16, G18 and G24. TLBO have shown near optimal solution for G03, G06, G07,
G09 and G21. So, TLBO has given optimum or near optimum solution solutions
for 15 constrained benchmark functions. Moreover, TLBO is consistent in finding
the global solutions for G01, G04, G08, G11, G12 and G24.

6.6 Implementation of TLBO for the Design Optimization
of Mechanical Elements

6.6.1 Experiment 10

In this experiment four different constrained benchmark mechanical design
problems, welded beam design, pressure vessel design, tension compression spring
and speed reducer, with different characteristics of objective function and con-
straints (linear and nonlinear) are experimented. Some of the problems are having
mixed discrete–continuous design variables. These problems are used by many
researchers to test the performance of different algorithms. All these problems are
discussed in detail in Chap. 4 (Examples 8, 9, 10 and 11).

The above mentioned mechanical benchmark problems were attempted by
many researchers, but in this book the effectiveness of the results of TLBO is
compared with the results of researchers published after the year 2004. As PSO,
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DE, ES and ABC are some of the well-known optimization algorithms, many
researchers had tried to enhance the performance of the basic algorithms by
modifying the basic algorithms between the years 2005 and 2010. Still efforts are
going on to modify or hybridize such well-known algorithms to increase their
effectiveness and efficiency. The above mentioned mechanical design problems
were attempted by (l ? k)-Evolutionary Strategy (ES) [11], Unified Particle
Swarm Optimization (UPSO) [12], Co-evolutionary Particle Swarm Optimization
(CPSO) [13], Co-evolutionary Differential Evolution (CDE) [8], Hybrid PSO-DE
[5] and ABC [4].

TLBO is implemented by considering the population size of 50 and maximum
function evaluations of 10,000. TLBO is compared with the above mentioned
optimization methods for the best solution, mean solution and maximum function
evaluations required to find the optimum solution. For TLBO, 25 independent runs
are carried out to check the performance of the algorithm. Results for the com-
parison of all the methods are shown in Table 6.17.

Table 6.15 Comparison of results (best solution) for the constrained benchmark functions by
using different hybrid optimization techniques and TLBO

BM-C Best

HPABC HBABC HDABC HGABC TLBO

G01 -11 215 215 -14.962117 215
G02 -0.38303 -0.748981 -0.743072 -0.769406 20.7984
G03 -0.999933 -1.000116 -1.00041 -0.908716 21.00049
G04 230,665.53867 230,665.53867 230,665.53867 -30,661.97624 230,665.53867
G05 5,127.051873 5,127.896622 5,126.496716 15,831,988.76 5,126.49671
G06 -6,961.813874 26,961.813876 26,961.813876 -6,671.485071 -6,961.813791
G07 24.83686 24.725735 24.323636 27.669474 24.317487
G08 20.095825 20.095825 20.095825 20.095825 20.095825
G09 680.638643 680.630701 680.630332 683.085962 680.6305114
G10 7,304.510202 7,106.484459 7,143.890531 7,651.225802 7,078.400036
G11 0.749909 0.7499 0.7499 0.751031 0.7499
G12 21 -0.99999 21 21 21
G13 0.383755 0.55963 0.901652 0.991843 0.885
G14 61.987375 -46.188182 246.968524 156.039946 -46.008214
G15 961.783308 961.987688 961.764842 961.716877 961.715022
G16 -1.888024 -1.888024 -1.888024 -1.861636 21.905155
G17 8,938.327929 8,928.478227 8,940.407178 3,699,802.099 8,907.513734
G18 20.86601 -0.863618 -0.865976 -0.811193 20.86601
G19 48.350446 33.187255 34.62052 38.507394 33.169223
G20 41,433,091.79 13,312,926.08 14,466,371.07 1,000,349.33 0.147429
G21 91,442.99424 193.754766 193.754224 163,816.2771 193.76128
G22 5.5176E ? 18 2.07822E ? 14 139,385,275.4 2.31661E ? 13 1,205,888,791
G23 1,166.228548 -19.503574 2321.485457 -0.001495 -0.065672
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It is observed from the results that TLBO finds the best solution for all the
problems except for the pressure vessel problem for which (l ? k)-ES has shown
better performance. But for the pressure vessel problem the average performance
of TLBO is better than (l ? k)-ES. The average performance of TLBO and PSO-
DE is same for all the problems except for welded beam problem for which PSO-
DE is better. TLBO requires 66, 70 and 66% less function evaluations than
(l ? k)-ES, PSO-DE and ABC, respectively. So it can be concluded that TLBO
requires less function evaluations and also it does not require any algorithm
parameters.

6.6.2 Experiment 11

In this experiment all the mechanical elements design optimization problems
considered in Chaps. 4 and 5 are tested by using TLBO. TLBO is implemented by

Table 6.16 Comparison of results (mean solution) for the constrained benchmark functions by
using different hybrid optimization techniques and TLBO

BM-C Mean

HPABC HBABC HDABC HGABC TLBO

G01 -7.6 215 215 -14.8719566 215
G02 -0.3094417 -0.6780855 -0.6438653 -0.7501423 20.7753
G03 49.2811631 -0.9950221 -0.996886 -0.3893368 20.997445
G04 -30,665.53861 -30,665.53861 230,665.53867 -30,602.3601 230,665.53867
G05 419,969.4498 5,250.854236 5,281.512188 29,404,976.11 5,245.4532
G06 193,038.186 -6,961.781506 26,961.813876 -5,385.982478 -6,961.812117
G07 48.4202269 26.0059673 24.6143301 31.6084807 24.5609413
G08 20.095825 -0.0891569 20.095825 -0.0958187 20.095825
G09 680.6706487 680.6867908 680.6344396 685.9619782 680.6436311
G10 8,262.829776 7,943.977794 7,237.877898 8,042.291921 7,482.529486
G11 0.8834262 0.7499 0.7499 0.8642834 0.7499
G12 21 21 21 21 21
G13 81.3958922 0.9736198 0.9954718 104.7640348 0.984562
G14 141.1351492 -24.3580828 245.529184 157.2434362 -24.2488048
G15 1,763.425164 964.1383936 963.604144 966.3025414 963.1373768
G16 21.888024 -1.8619364 21.888024 -1.6956546 -1.8850326
G17 1,567,982,404 9,040.261009 8,994.320904 32,060,333.84 209,616.2123
G18 -0.7473602 1,818.180163 -0.788882 -0.6725528 20.8651452
G19 149.1784138 41.006861 36.0241206 43.3501844 39.4778044
G20 33,808,003,464 15,626,925.09 15,604,945.9 5,793,202.773 2,766,258.771
G21 765,071.683 9,074.032606 4,252.105379 208,155.2447 6,597.187215
G22 3.40929E ? 19 3.53243E ? 16 9.18624E ? 16 1.38082E + 16 9.00299E ? 16
G23 19,633.68237 4,847.183274 841.4603966 2,481.62147 465.1448548
G24 14.4919698 25.508013 25.508013 -5.4785796 25.508013
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using the population size of 50 and number of generations of 500. In this exper-
iment also results of TLBO is compared with the results of all the hybrid algo-
rithms discussed in Chap. 5. Comparison of results for the hybrid algorithms and
TLBO for the best and the mean solutions are given in Tables 6.18 and 6.19. For
the mechanical design problems TLBO has outperformed all the hybrid algorithms
in finding the best solutions but it has shown slight inferior results for the mean
solutions than HDABC (Figs. 6.7, 6.8).

The overall performance of all the hybrid algorithms and TLBO is shown by
using bar chart in Figs. 6.9 and 6.10 for the best and the mean solutions. It is
observed from the bar charts that TLBO has shown better performance for 11, 17
and 25 unconstrained benchmark functions, constrained benchmark functions and
mechanical element design optimization problems respectively for the best solu-
tion. Moreover, TLBO has shown better performance for 12, 14 and 17 uncon-
strained benchmark functions, constrained benchmark functions and mechanical
element design optimization problems respectively for the mean solution. So, the
overall performance of TLBO is approximately 1.4 and 1.22 times than HDABC
for the best and the mean solutions. Results showing the best values of objective
function along with the values of its design variable and constraints for all the
mechanical elements design optimization problems are given in Tables 6.20, 6.21
and 6.22.

6.6.3 Experiment 12

In this experiment results are compared based on the convergence for HDABC and
TLBO for the problems for which both the algorithms have same mean solutions.
Same mean solutions are considered as it is the measure of consistency of the
algorithm. If two different algorithms are having same mean it implies that both
the algorithms are capable of finding the global solutions with the same consis-
tency. So it is required to check that out of these two algorithms which of the
algorithms finds the solution rapidly and based on this the convergence plots were
obtained. Convergence graphs are plotted for the average solutions obtained in five
different runs in each iteration. Convergence graphs were drawn for the Step and
Quartic unconstrained benchmark functions, G01, G04, G08 and G12 constrained
benchmark functions and Examples 1, 2, 4, 8, 11, 14 and 16 for the mechanical
design problems Fig. 6.7. It is seen from the convergence graphs that the con-
vergence rate of TLBO is very high compared to HDABC for the Step and the
Quartic functions. There is no much difference in the convergence of HDABC and
TLBO for the constrained benchmark functions, but still HDABC is slightly better
than TLBO for G01 and G12 and TLBO is slightly better than HDABC for G04
and G08. For mechanical design problems TLBO has shown better convergence
for all the examples except Example 11.
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Fig. 6.7 Comparison of HDABC and TLBO based on convergence curve for different
benchmark functions and mechanical design problems
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6.7 Implementation of TLBO for the Real Parameter
Optimization

6.7.1 Experiment 1

It is a common practice in the field of optimization to compare different algorithms
by using different benchmark problems. These comparisons are limited to the test
problems taken for the study and sometimes the chosen algorithm and the test
problems are complimentary to each other and the same algorithm may not show
the same performance for the other real parameter optimization problems. So, a
common platform is required to compare the performance of different algorithms
for different benchmark problems.

Congress on Evolutionary Computation 2005 [14] had provided the common
platform for the comparison of the performances of different algorithms by
specifying a common termination criterion, size of problem, initialization scheme,
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etc. In this section, 25 different benchmark problems are experimented using the
proposed TLBO algorithm. These benchmark functions are having different
characteristics such as separability, scalability and multimodality. A function is
multimodal if it has two or more local optima. A function is separable if it can be
written as a sum of functions of variable separately. Non-separable functions are
more difficult to optimize and difficulty increases if the function is multimodal.
Complexity increases when the local optima are randomly distributed. Further-
more, complexity increases with the increase in dimensionality. All the benchmark
functions proposed in CEC 2005 are generated from the basic benchmark func-
tions (Sphere, Rastrigin, Rosenbrock, Schwefel, Griewank, etc.) by shifting,
rotating or hybridizing different basic benchmark functions. Shifting, rotating and
hybridizing add more complexity to the benchmark functions and so testing of
algorithms for such problems is a real challenge. These benchmark functions are
available on: http://www.ntu.edu.sg/home/EPNSugan.

Some common evolution criteria were presented in CEC 2005 [14] and these
criteria are considered to have the completeness. All the benchmark functions are
run for 25 times each. Function error value (f(x) - f(x*)) is recorded after 1E3,
1E4, 1E5 number of function evaluations and at termination for each run. Function
error is considered as the difference between the global optimum and the best
result obtained by the algorithm. If the algorithm finds the global optimum, then
the error will be 0E0. Termination is done when the maximum function evalua-
tions equals to 10,000*D, where D indicates the dimension of the problem.
Dimensions taken for the experiment are 10 and 30. Function error values are
recorded for all the 25 runs and sorted from the best value to the worst value. After
sorting, 1st (Best), 7, 13th (Median), 19 and 25th (Worst) values are recorded.
Mean and standard deviation for all the runs are also recorded. TLBO is coded in
MATLAB 7 and it is run on a laptop machine possessing Intel Pentium processor
with 2.2 GHz and 3 GB RAM. TLBO is applied for all the benchmark functions
by considering the population size of 20. As TLBO is a parameter-less algorithm
no other parameter is required for the working of the algorithm. Function error
values for dimension 10 are presented in Tables 6.23, 6.24 and 6.25 and function
error values for dimension 30 are given in Tables 6.26, 6.27 and 6.28. The pro-
cedure to calculate the complexity of the algorithm is given in [14]. The com-
plexity of TLBO is calculated as (T2(mean) - T1)/T0. where, T0 is the time to
calculate the following

For i = 1:1,000,000
x = (double) 5.55
x = x ? x; x = x/2; x = x * x; x = sqrt(x); x = ln(x); x = exp(x); y = x/x;
end

T1 is the time to calculate only function B03 for 200,000 evaluations for certain
dimension and T2 is the mean time for the optimization algorithm to calculate
function B03 for 200,000 function evaluations for the same dimension. T2(mean) is
the mean time for T2 obtained for 5 times. The complexity of the algorithm is
given in Table 6.29.
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The performance of TLBO is compared with the other seven optimization
algorithms based on the mean value for 1E5 function evaluations with dimension
10. It is seen from Tables 6.30, 6.31 and 6.32 that TLBO has outperformed all the
other algorithms or performed equally best for nine benchmark functions, B01,
B02, B04, B05, B16, B17, B21, B22 and B24. Moreover, TLBO has outperformed
six other algorithms for other six benchmark functions, B07, B08, B13, B14, B19,
and B20.

6.7.2 Experiment 2

In this experiment, 22 different constrained benchmark functions from CEC 2006
(Liang et al. [26]) are experimented. The capability of the algorithm to find the
global solution for the constrained problem depends on the constraint handling
technique. In this experiment four different constraint handling techniques like
superiority of feasible solutions (SF) [15], self-adaptive penalty approach (SP) [7],
e-constraint technique (EC) [16] and stochastic ranking technique (SR) [17] are
experimented with TLBO. Moreover, a new constraint handling technique, ECHT
(ensemble of constraint handling technique) suggested in [18] is also experimented
with TLBO. The technique suggested by Montes and Coello [11] ensembles four
different constraint handling techniques, namely SF, SP, EC and SR. In this
experiment, the algorithm is run for 30 times for each benchmark function with the
population size of 50 and maximum number of generations as 2,000. Constrained
problems are generally considered more complex than the unconstrained problems
and require more population size than that required by the unconstrained problems.
Hence the population size of 50 is considered in this experiment. For the perfor-
mance of the algorithm, best solution, mean solution, median solution, worst
solution and standard deviation are recorded for all the functions. The results for all
the 22 benchmark functions using TLBO with different constraint handling tech-
niques are given in Table 6.33. The notations B, MD, MN, W and SD in Table 6.33
denote Best, Median, Mean, Worst and Standard deviation, respectively.

All the constraint handling techniques are compared based on the searching
capability for the best and the mean solutions. It is observed from Table 6.33 that
TLBO with ECHT has produced superior results for searching the best solution
than the other constraint handling techniques for four benchmark functions, viz.
G14, G19, G21 and G23. TLBO with ECHT has performed equivalent with other
constraint handling techniques for the rest 18 benchmark functions. Moreover,
TLBO with ECHT has produced superior results for eleven benchmark functions
in searching the mean solution, viz. G01, G02, G05, G07, G10, G14, G17, G18,
G19, G21 and G23 and for the rest of the benchmark functions TLBO with ECHT
has produced equivalent results than the other constraint handling techniques. The
graphical representation for the performance of different constraint handling
techniques is shown in Fig. 6.8. It is observed from Fig. 6.8 that all the constraint
handling techniques except ECHT has shown nearly equivalent performance for
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searching the best as well as the mean solutions. It is also observed from the results
that TLBO with ECHT has performed 1.57 times better than other constraint
handling techniques for searching the best solutions and 2.2 times better for
searching the mean solutions.

The performance of TLBO is also compared with the other optimization
methods with different constraint handling techniques such as evolutionary strat-
egies with stochastic ranking (ES ? SR) [17], simple multi-membrane evolu-
tionary strategy (SMES) [11], adaptive tradeoff model evolutionary strategy

5
4

5
4

7

13 13

3 3
4 4

6

9

11

(E
S

 +
 S

R
) 

S
M

E
S

A
T

M
E

S
 

M
ul

tio
bj

e
ct

iv
e

IS
R

 

E
C

H
T

-E
P

2

E
C

H
T

-T
L

B
O

BEST MEAN

Fig. 6.9 Comparison of TLBO with other optimization techniques for the 22 constrained
benchmark functions in searching the best and the mean solutions

14
15

14
13

22

11
10

11
10

22

SF-TLBO SP-TLBO EC-TLBO SR-TLBO ECHT-TLBO

BEST MEAN

Fig. 6.8 Performance of different constraint handling techniques using TLBO for the 22
constrained benchmark functions in searching the best and the mean solutions

166 6 Development and Applications of a New Optimization Algorithm



www.manaraa.com

(ATMES) [19], multi-objective evolutionary strategy [19], improved stochastic
ranking (ISR) [17] and ensemble of constraint handling technique strategy (ECHT-
EP) [18]. Comparison of the results for the performance of TLBO with other
techniques is given in Table 6.34 and the graphical representation for the com-
parison in searching the best and the mean solution is shown in Fig. 6.9. It is
observed from the results that the ECHT is an effective constraint handling
method. ECHT has outperformed all the other techniques in searching the best and
the mean solutions. ECHT with ES and TLBO has produced similar results for the
best solution and so both the algorithms have performed equivalently with ECHT
in searching the best solution. For searching the mean solution, ECHT with TLBO
has outperformed by performing 1.22 times better than ES.

6.7.3 Experiment 3

In this experiment, 13 constrained benchmark functions given in [18] are exper-
imented. For the considered 13 problems all the constrained handling techniques
mentioned in experiment 2 are used with the TLBO. In this experiment also, the
population size is taken as 50 and maximum number of generations as 1,000. The
results are compared based on the best solutions, median solutions, mean solutions,
worst solutions and the standard deviation. The results of TLBO are compared
with the results obtained using DE with all the constrained handling techniques
presented by Mallipeddi and Suganthan [18].

For this experiment also the comparison is made for TLBO using all the con-
straint handling techniques. The results of comparison are given in Table 6.35 and
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Fig. 6.10 Performance of different constraint handling techniques using TLBO for 13
constrained benchmark functions in searching the best and the mean solutions
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graphical representation is shown in Fig. 6.10. It is observed from the results that
ECHT with TLBO has outperformed other constraint handling technique by per-
forming 1.44, 1.3, 1.3 and 1.18 times better than SR, SF, SP and EC techniques
respectively in searching the best solutions. Moreover, ECHT with TLBO has
performed 6, 6, 4 and 2.4 times better than SF, EC, SR and SP techniques
respectively in searching the mean solution. The performance of TLBO is also
compared with differential evolution (DE) for all the 13 problems. It is observed
from the results that performance of TLBO and DE with ECHT techniques is
nearly same and have produced similar results for most of the benchmark functions
except H02 and H09 for which both the algorithms have outperformed each other
in searching the mean solution.

All the nature-inspired algorithms such as GA, PSO, ACO, ABC, HS, etc.
require algorithm parameters to be set for their proper working. Proper selection
of parameters is essential for the searching of the optimum solution by these
algorithms. A change in the algorithm parameters influences the effectiveness of
the algorithm. To avoid this difficulty an optimization method, TLBO, which is
algorithm parameter free, is presented in this book. This method works on the
effect of influence of a teacher on learners. Like other nature-inspired algo-
rithms, TLBO is also a population-based method which uses a population of
solutions to proceed to the global solution. As in PSO, TLBO uses the best
solution of the iteration to change the existing solution in the population thereby
increasing the convergence rate. TLBO does not divide the population like ABC
and SFLA. Like GA which uses selection, crossover and mutation phase and
ABC which uses employed, onlooker and scout bees phase, TLBO uses two
different phases, ‘teacher phase’ and ‘learner phase’. TLBO uses the mean value
of the population to update the solution. TLBO implements greediness to accept
the good solution like ABC. In teacher phase of TLBO, the update of solution
from the old solution is considered as the exploration and the greedy selection
which follows it is considered as the exploitation. Similarly, in the learner
phase, the updating of the solution is the exploration and the greedy selection is
the exploitation. So, TLBO incorporates both exploration and exploitation
effectively in the balanced manner. Applications of TLBO can be found so far
in the works of [20, 21, 22, 23, 24].

Table 6.29 Computational complexity of TLBO

T0 T1 T2(mean) Complexity
D = 10 0.4367 1,222.9 2,786.8 3,581.2
D = 30 0.4367 1,412.8 2,997.5 3,628.8
D = 50 0.4367 1,861.1 3,535.4 3,834.0

6.7 Implementation of TLBO for the Real Parameter Optimization 177
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Chapter 7
Design Optimization of Selected Thermal
Equipment Using Advanced Optimization
Techniques

7.1 Design Optimization of Thermoelectric Cooler

The application of thermoelectric coolers (TECs) has grown appreciably because
of the need for a steady, low-temperature, environment friendly operating envi-
ronment for various applications such as aerospace, military, medicine, biology
and other electronic devices. However, the cooling capacity and coefficient of
performance (COP) of TECs are low compared with traditional devices such as
vapor compression system and vapor absorption system. Therefore, performance
improvement of the TECs is an important issue in their applications [1, 2].

With the help of one-stage TEC, maximum 70 K temperature difference is
produced when its hot end is maintained at room temperature. So, when a large
temperature difference is required, two-stage TECs should be employed [3]. Usually
two-stage TECs are commercially arranged in cascade; the cold stage is attached to
the heat source and the hot stage pumps total heat to the environment. Moreover the
two-stage TECs are arranged in two different design configurations as shown in
Fig. 7.1. In such two-stage TECs, the determination of the number of thermoelectric
(TE) modules in hot stage and cold stage as well as the supply current to the hot stage
and the cold stage are important for improving the COP and cooling capacity of
TECs. Moreover, the consideration of temperature-dependent material properties
and existence of thermal and electric contact resistance between the contact surfaces
of TECs make the determination of these parameters complex ([4, 6]).

Several investigators had used different methodologies considering different
objective functions to optimize the TECs design. Chen et al. [5] carried out the
optimal performance comparison of single and two-stage TE refrigeration systems.
The authors had calculated the maximum COP and rate of refrigeration and
optimized the internal structure parameter of the TE device. Xuan et al. [6]
carried out the optimization of a two-stage TEC with two design configurations.
The authors had found out the optimum ratio of the number of TE modules
between the stages and optimum ratio of the electric current between stages for

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-2748-2_7, � Springer-Verlag London 2012
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maximization of cooling capacity and COP of TEC. Xuan [7] and Xuan et al. [8]
carried out the performance analysis of a two-stage TEC with three design con-
figurations. The authors had considered the maximum cooling capacity, maximum
COP and the maximum temperature difference of the two-stage TEC. Chen et al. [9]
carried out the parametric optimum design of a TE device. The authors had cal-
culated the maximum COP and rate of refrigeration of the system and determined
the optimal operating region of the system. Pan et al. [2] carried out the performance
analysis and parametric optimization of a multi-couple TE refrigerator. The authors
had determined the optimal operating-state of the COP for a TE refrigeration device.

Cheng and Lin [1] used genetic algorithm for geometric optimization of TEC.
The authors had considered maximization of cooling capacity as an objective
function and determined the optimum value of structure parameter of TE modules.
Cheng and Shih [4] used GA for maximizing the cooling capacity and COP of a
two-stage TEC. The authors had considered the effect of thermal resistance and

Fig. 7.1 Two-stage TEC. a Electrically separated. b Electrically connected in series (from [4],
reprinted with permission from Elsevier)
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determined the optimum value of input current and number of TE modules for two
different design configurations of TEC. Abramzon [10] used multi start adaptive
random search method for the numerical optimization of the TEC. The author had
considered maximization of total cooling rate of the TEC as an objective function.
Yu et al. [11] analyzed the optimum configuration of two-stage TE modules. The
authors had investigated the influence of different parameters on the cooling
performance of the TE modules. Chen et al. [12] analyzed the performance of a
two-stage TE heat pump system driven by a two-stage TE generator. The authors
had optimized the allocations of the TE element pairs among the two TE gener-
ators and the two TE heat pumps for maximizing the heating load and COP
respectively. Several other researchers [13–16] investigated the two-stage TECs
for optimization of COP or for optimum allocation of TE module.

So far, only GA is used for the optimization of TECs. Moreover, only
single objective optimization of TECs was carried out by previous researchers.
Considering this fact, the main objectives of this work are: (1) multi-objective
optimization of the influential parameters of a two-stage TEC using the TLBO
algorithm and (2) to demonstrate the effectiveness of the TLBO algorithm for
multi-objective optimization of the TEC. The optimization results obtained by
using TLBO are compared with those obtained by using GA for the same example
considered by previous researchers.

7.1.1 Thermal Modeling of Two-Stage TECs

Based on the work of Cheng and Shih [4], thermal model of the two-stage TECs
is formulated as described below (from Cheng and Shih [4]; reprinted with
permission from Elsevier).

The cascade two-stage TECs are stacked one on the top of the other (as shown
if Fig. 1). Here in this arrangement the top stage is the cold stage and the bottom
stage is the hot stage. The COP of the two-stage TECs is given by,

COP ¼ Qc;c

Qh;h � Qc;c
ð7:1Þ

where, Qc,c and Qh,h are the cooling capacity of the cold side of the cold stage and
the heat rejected at the hot side of hot stage, respectively and are obtained by heat
balance at relevant junction of TECs.

Qc;c ¼
Nt

r þ 1
acIcTc;c �

1
2

I2
c Rc � KcðTc;h � Tc;cÞ

� �
ð7:2Þ

Qh;h ¼
Ntr

r þ 1
ahIhTh;h þ

1
2

I2
hRh � KhðTh;h � Th;cÞ

� �
ð7:3Þ
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where, Nt is the total number of TE modules of two-stages and r is the ratio of the
number of TE modules between the hot stage (Nh) to the cold stage (Nc). Ic and Ih

are the input current to the cold stage and the hot stage, respectively. T is
the temperature of the TEC as shown in Fig. 7.1. a, R and K are the Seebeck
coefficient, electrical resistance and thermal conductance of the cold stage and the
hot stage, respectively and their relation to TE material properties is given by,

ai ¼ ai;p � ai;n

� �
Ti;ave

ð7:4Þ

Ri ¼
qi;p þ qi;n

� �
Ti;ave

G
ð7:5Þ

Ki ¼ ki;p þ ki;n

� �
Ti;ave

G ð7:6Þ

where, subscript i stands for the cold side (c) and the hot side (h) of TEC; subscript
ave indicates the average value and subscripts p and n indicate the properties of
p- and n-type TE modules. G is the structure parameter of the TE modules and
indicates the ratio of cross-section area to the length of TE modules. q and k are
the electric resistivity and thermal conductivity of the TE material, respectively.
As the material properties are considered to be dependent on the average tem-
perature of the cold side and hot side of each stage, their values are calculated by
the following correlation [4]

ai;p ¼ �ai;n ¼ 22224þ 9300:6 Ti;ave � 0:9905 T2
i;ave

� 	
10�9 ð7:7Þ

qi;p ¼ qi;n ¼ 5112þ 163:4 Ti;ave þ 0:6279 T2
i;ave

� 	
10�10 ð7:8Þ

ki;p ¼ ki;n ¼ 62605� 277:7 Ti;ave þ 0:4131 T2
i;ave

� 	
10�4 ð7:9Þ

The total thermal resistance (RSt) existing between the interface of the TECs is
given by,

RSt ¼ RSsprd + RScont ð7:10Þ

where, RSsprd and RScont are the spreading resistance and contact resistance
between the interface of the two TECs, respectively.

Based on the work of Lee et al. [17] and Cheng and Shih [4], the spreading
resistances between the interface of the two TECs are calculated from the fol-
lowing equation,

RSsprd ¼
wmax

kh;s radc;s
ffiffiffi
p
p ð7:11Þ

where, radc,s is the equilibrium radius of the substrates of the cold stage and kh,s is
the thermal conductivity of the substrate of the hot stage. The detailed explanation
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related to the equilibrium radius is available in the work of Lee et al. [17].
However, it is calculated by the following equation.

radc;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a Nt=r þ 1
� �

p

s

ð7:12Þ

where, factor 2a represents the linear relationship between the cross-sectional area
of the substrate and the TE modules [4].

The dimensionless parameter wmax of the Eq. 7.11 is given by,

wmax ¼
e sffiffiffi

p
p þ 1ffiffiffi

p
p 1� eð Þu ð7:13Þ

where, e and s are the dimensionless parameters and are calculated by,

e ¼ radc;s

radh;s
¼

ffiffiffi
1
r

r
ð7:14Þ

s ¼ sh;s

radh;s
ð7:15Þ

where, radh,s is the equilibrium radius of the substrate of the hot stage and Sh,s is
the substrate thickness of the hot stage, respectively and given by,

radh;s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a Ntr=r þ 1
� �

p

s

ð7:16Þ

The dimensionless parameter u of the Eq. 7.13 is given by,

u ¼
tanh k� sð Þ þ k

Bi

1þ k
Bi tanh k� sð Þ

ð7:17Þ

where, Bi is the Biot number and its value is infinity i.e. (Bi = ?) for isothermal
cold side of the hot stage.

The dimensionless parameter k of the Eq. 7.17 is given by [4],

k ¼ pþ 1
e
ffiffiffi
p
p ð7:18Þ

The contact thermal resistance (RScont) at the interface of the two TECs is
calculated by,

RScont ¼
RSj

2a Nt=r þ 1

� 	 ð7:19Þ

where, Rsj is the joint resistance at the interface of two TECs.
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The heat rejected at the hot side of the cold stage (Qc,h) and cooling capacity at
the cold side of the hot stage (Qh,c) is obtained by considering the heat balance at
the interface of TECs.

Qc;h ¼
Nt

r þ 1
acIcTc;h þ

1
2

I2
c Rc � KcðTc;h � Tc;cÞ

� �
ð7:20Þ

Qh;c ¼
Ntr

r þ 1
ahIhTh;h �

1
2

I2
hRh � KhðTh;h � Th;cÞ

� �
ð7:21Þ

As the hot side of the cold stage and cold side of the hot stage are at the
interface Qc,h = Qh,c, but due to the thermal resistance at the interface, the tem-
perature of both sides is not same. The relation between both these temperatures is
given by [4],

Th;c ¼ Tc;h þ RSt Qc;h ð7:22Þ

The next section describes the objective function formulation based on this
thermal model of two-stage TECs.

7.1.2 Multi-Objective Optimization and Formulation
of Objective Functions

Multi-objective optimization has been defined as finding a vector of decision
variables while optimizing (i.e. minimizing or maximizing) several objectives
simultaneously, with a given set of constraints. In the present work, two
such objectives namely maximizing the cooling capacity and maximizing the
COP of the two-stage TECs are considered simultaneously for multi-objective
optimization.

The first objective is to maximize the cooling capacity of a two-stage TEC as
given by the Eq. 7.23.

Z1 ¼ Maximize Qc;cðXÞ; X ¼ x1; x2; . . .. . .xDn½ �;
xi;min� xi� xi;max; i ¼ 1; 2; . . .. . .Dn

ð7:23Þ

Subject to the set of constraints (m),

gjðXÞ� 0; j ¼ 1; 2. . .. . .m ð7:24Þ

The second objective is to maximize the COP of a two-stage TEC as given by
the Eq. 7.25.

Z2 ¼ Maximize COPðYÞ; Y ¼ y1; y2; . . .. . .yDn½ �;
yi;min� yi� yi;max; i ¼ 1; 2; . . .. . .Dn

ð7:25Þ
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Subject to a set of constraints (m)

gjðYÞ� 0; j ¼ 1; 2. . .. . .m ð7:26Þ

The above-mentioned single objective functions are put together for multi-
objective optimization. The normalized multi-objective function (Z) is formulated
considering different weight factors to both the objectives and is given by the
following equation:

Maximize Z ¼ w1
Z1
�
Z1;max

� 	
þ 1� w1ð Þ Z2

�
Z2;max

� 	
þ
Xm

j¼1

R1 gj Xð Þ
� �2

þ
Xm

j¼1

R1 gj Yð Þ
� �2 ð7:27Þ

where, w1 is weight factor for the first objective function. Z1,max and Z2,max are the
maximum values of the objective functions Z1 and Z2, respectively when these
objectives are considered independently. The last two terms in Eq. 7.27 takes into
account the constraints violation. R1 is the penalty parameter having a large value.
The value of weight factor w1 can be decided by the designer. The result is a set of
optimum solutions, called Pareto solutions, each of which is a trade off between
the considered objective functions. The designer can choose any set of optimal
solutions by selecting desired value of w1 between 0 and 1.

Now an example is considered to demonstrate the effectiveness of the TLBO
algorithm for the optimization of two-stage TECs.

7.1.3 Application Example of a Two-Stage TEC

The effectiveness of the TLBO algorithm is assessed by analyzing an example of
two-stage TECs which was earlier analyzed by Cheng and Shih [4] using GA.
A Two-stage TEC used to produce temperature of 210 K at the cold stage when its
hot stage is maintained at a temperature of 300 K is needed to be optimized for
maximum cooling capacity and maximum COP. The total number of TE modules
of the two stages is 50 and the ratio of cross-sectional area to the length of TE
modules is 0.0018 m. Thermal resistance exists at the interface of TEC. Alumina
having thermal conductivity 30 W/m K is acting as a substrate to take into account
the spreading resistance. The thickness of the substrate is 1 mm. To take into
account the contact resistance between the two-stages, the joint resistance is varied
between 0.02 and 2 cm2 K/W. The property values of TE material are considered
to be temperature dependent. Moreover, the two-stage TECs, electrically separated
and electrically connected in series as shown in Fig. 7.1 are considered for the
optimization.

Following inequality constraints which are bound by lower and upper limits of
the design variables are considered in the present work of TECs optimization.
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4� Ih� 11 ð7:28Þ

4� Ic� 11 ð7:29Þ

2� r� 7 ð7:30Þ

7.1.3.1 Single Objective Consideration

Table 7.1 shows the optimized parameters of the considered example obtained by
using the TLBO approach for maximum cooling capacity as well as maximum
COP when the considered two-stage TEC is electrically separated and its com-
parison with the optimized parameters obtained by Cheng and Shih [4] using the
GA approach. When the joint resistance is 0.02 cm2 K/W, present approach using
the TLBO results in such combination of input current and TE module which
increases the cooling capacity by 3.84% as compared to the GA approach sug-
gested by Cheng and Shih [4]. Also as the joint resistance increases from 0.02 to
0.2 and then 2 cm2 K/W, the increment in cooling capacity is 5.32 and 7.18%,
respectively as compared to the GA approach. Similarly, for the maximum COP
consideration, the present approaches yield 1.1, 4.29 and 7.21% higher COP as

Table 7.1 Comparison of the two-stage TEC (electrically separated)

GA [4] TLBO

Max. Qc,c Max. COP Max. Qc,c Max.COP

RSj = 0.02 cm2 K/W
Ih (A) 8.613 6.611 9.3077 6.7299
Ic (A) 7.529 7.592 7.7146 7.581
r 5.25 6.143 5.25 6.143
Nc 8 7 8 7
Qc,c (W) 0.755 – 0.784 0.5968
COP – 0.019 0.015 0.0192
RSj = 0.2 cm2 K/W
Ih (A) 8.652 6.769 9.3278 6.5338
Ic (A) 7.805 7.465 8.0121 7.8165
r 5.25 6.143 5.25 6.143
Nc 8 7 8 7
Qc,c (W) 0.838 – 0.8826 0.6544
COP – 0.021 0.0168 0.0219
RSj = 2 cm2 K/W
Ih (A) 9.29 5.204 9.609 4.4163
Ic (A) 9.41 9.889 11 10.722
r 4.556 5.25 4.556 7.333
Nc 9 8 9 6
Qc,c (W) 2.103 – 2.254 1.201
COP – 0.061 0.0393 0.0654
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compared to the GA approach when the joint resistance is 0.02, 0.2 and 2 cm2 K/W,
respectively.

Table 7.2 shows the comparison of the optimized parameters for a two-stage
TEC electrically connected in series. In this case also, the increment in cooling
capacity is corresponding to 2.45, 8.1 and 7.2% when the joint resistance is 0.02,
0.2 and 2 cm2 K/W, respectively as compared to the GA approach considered by
Cheng and Shih [4]. Similarly, for the maximum COP consideration the present
approaches results in 0.5, 7.5 and 5.41% higher COP as compared to the GA
approach when the joint resistance is 0.02, 0.2 and 2 cm2 K/W, respectively.

7.1.3.2 Multi-Objective Consideration

The results of single objective optimization for maximum cooling capacity and
maximum COP reveal that higher cooling capacity accompanies the lower COP
and vice versa which reflects the necessity of multi-objective optimization for
two-stage TECs. Equation 7.27 represents the normalized objective function for
multi-objective optimization. Figure. 7.2 shows the Pareto-optimal curve obtained
by using the odified TLBO algorithm for multi-objective optimization when the
considered two-stage TECs are electrically separated. As seen from Fig. 7.2a–c

Table 7.2 Comparison of the two-stage TEC (electrically connected in series)

GA [4] TLBO

Max. Qc,c Max. COP Max. Qc,c Max.COP

RSj = 0.02 cm2 K/W
Ih (A) 8.415 7.27 8.5737 7.1558
Ic (A) 8.415 7.27 8.5737 7.1558
r 6.143 5.25 6.143 5.25
Nc 7 8 7 8
Qc,c (W) 0.73 – 0.7479 0.6405
COP – 0.019 0.0159 0.0191
RSj = 0.2 cm2 K/W
Ih (A) 8.663 7.135 8.7375 7.1681
Ic (A) 8.663 7.135 8.7375 7.1681
r 6.143 5.25 6.143 6.143
Nc 7 8 7 8
Qc,c (W) 0.818 – 0.8838 0.7098
COP – 0.02 0.0172 0.0215
RSj = 2 cm2 K/W
Ih (A) 9.482 7.133 10.387 7.305
Ic (A) 9.482 7.133 10.387 7.305
r 4 4.555 4.556 3.546
Nc 10 9 9 11
Qc,c (W) 2.123 – 2.276 1.6947
COP – 0.048 0.0354 0.0506
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that for different values of joint resistance, the maximum cooling capacity exists at
design point E where the COP is minimum. On the other hand, the maximum COP
occurs at design point A where the cooling capacity has minimum value.

Fig. 7.2 The distribution of Pareto-optimal points solutions for electrically separated TEC using
the TLBO algorithm. a Rsj = 0.2cm2K/W. b Rsj = 2cm2K/W. c Rsj = 0.2cm2K/W
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Specifications of five sample design points A–E in Pareto-optimal fronts for dif-
ferent values of joint resistance are listed in Table 7.3. It is observed from the
Fig. 7.2a–c and Table 7.3 that by properly modulating the input current of hot
stage and cold stage as well as TE module of each stage, the cooling capacity and
COP of the two-stage TEC increases with the increase in joint resistance.

Figure 7.3 represents the Pareto-optimal curve obtained by using the TLBO
algorithm for the two-stage TECs electrically connected in series. Looking at the
Pareto front obtained for different values of joint resistance it is found that
the maximum cooling capacity exists at design point E where the COP is lowest.
On the other hand, the maximum COP occurs at design point A where the
cooling capacity has minimum value. Table 7.4 shows the specifications of
sample design points A–E in Pareto-optimal fronts for different values of the
joint resistance.

In the present work, TLBO algorithm is applied successfully to the multi-
objective optimization of a two-stage TEC considering two conflicting objectives:
cooling capacity and COP. Two different configuration of TECs, electrically
separated and electrically connected in series are investigated for the optimization.
Moreover, the contact and spreading resistance of TEC are also considered. The
ability of the TLBO algorithm is demonstrated and the performance of the TLBO
algorithm is compared with the performance of GA. The proposed algorithm can

Table 7.3 Optimal output variables for A to E Pareto-optimal front shown in Fig. 7.2

Output variable Design point

A B C D E

RSj = 0.02 cm2 K/W
Ih (A) 6.7299 7.4285 8.0476 8.7347 9.3077
Ic (A) 7.581 7.4018 7.5229 7.6351 7.7146
r 6.143 5.25 5.25 5.25 5.25
Nc 7 8 8 8 8
Qc,c (W) 0.5968 0.6788 0.7375 0.7745 0.784
COP 0.0192 0.0189 0.018 0.0165 0.015
RSj = 0.2 cm2 K/W
Ih (A) 6.5338 7.0084 7.5076 8.0907 9.3278
Ic (A) 7.8165 7.5756 7.6925 7.8118 8.0121
r 6.143 5.25 5.25 5.25 5.25
Nc 7 8 8 8 8
Qc,c (W) 0.6544 0.717 0.782 0.8368 0.8826
COP 0.0219 0.0217 0.0212 0.0201 0.0168
RSj = 2 cm2 K/W
Ih (A) 4.4163 5.5156 6.9828 7.9011 9.609
Ic (A) 10.722 10.759 10.866 10.581 11
r 7.333 6.143 5.25 4.556 4.556
Nc 6 7 8 9 9
Qc,c (W) 1.201 1.5826 1.9754 2.1289 2.254
COP 0.0654 0.0631 0.0559 0.0506 0.0393
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be easily customized to suit the optimization of other types of thermal systems
involving large number of variables and objectives. These features boost up the
applicability of the proposed algorithm for the thermal systems optimization.

Fig. 7.3 The distribution of Pareto-optimal points solutions for electrically connected TEC
using the TLBO algorithm. a Rsj = 0.2 cm2 K/W. b Rsj = 2 cm2 K/W. c Rsj = 0.2 cm2 K/W
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7.2 Design Optimization of Shell and Tube Heat Exchanger
Using Shuffled Frog Leaping Algorithm

Heat Exchanger is a process equipment designed for the effective transfer of heat
energy between two or more fluids; a hot fluid and a coolant. The purpose may be
either to remove heat from a fluid or to add heat to a fluid. In heat exchangers,
there are usually no external heat and work interactions. Typical applications
involve heating or cooling of a fluid stream of concern and evaporation or con-
densation of single or multicomponent fluid streams. The heat transferred in the
heat exchanger may be in the form of latent heat (e.g. in boilers and condensers),
or sensible heat (in heaters and coolers). Some examples are:

• Boilers, Evaporators, super heaters and condensers of a power plant.
• Automobile radiators and oil coolers of heat engines.
• Evaporator of an ice plant and milk chillers of pasteurizing plant.
• Condensers and evaporators in refrigeration units.
• Water and air heaters or coolers.

Table 7.4 Optimal output variables for A to E Pareto-optimal front shown in Fig. 7.3

Output variable Design point

A B C D E

RSj = 0.02 cm2 K/W
Ih (A) 7.1558 7.4227 7.7519 8.002 8.5737
Ic (A) 7.1558 7.4227 7.7519 7.6351 8.5737
r 5.25 5.25 5.25 5.25 6.143
Nc 8 8 8 8 7
Qc,c (W) 0.6405 0.6785 0.7127 0.7294 0.7479
COP 0.0191 0.0189 0.0184 0.0178 0.0159
RSj = 0.2 cm2 K/W
Ih (A) 7.1681 7.4634 7.7568 8.223 8.7375
Ic (A) 7.1681 7.4634 7.7568 8.223 8.7375
r 6.143 5.25 5.25 5.25 6.143
Nc 8 8 8 8 7
Qc,c (W) 0.7098 0.7563 0.7915 0.825 0.8838
COP 0.0215 0.0209 0.0204 0.0191 0.0172
RSj = 2 cm2 K/W
Ih (A) 7.305 7.77 8.285 9.32 10.387
Ic (A) 7.305 7.77 8.285 9.32 10.387
r 3.546 3.546 3.546 4 4.556
Nc 11 11 11 10 9
Qc,c (W) 1.6947 1.868 2.02 2.2258 2.276
COP 0.0506 0.0499 0.0481 0.0426 0.0354
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In other applications, the objective may be to recover or reject heat, or
sterilize, pasteurize, fractionate, distil, concentrate, crystallize or control a process
fluid.

Shell and tube heat exchangers consist of a series of tubes. One set of these
tubes contains the fluid that must be either heated or cooled. The second fluid runs
over the tubes that are being heated or cooled so that it can either provide the heat
or absorb the heat required. A set of tubes is called the tube bundle and can be
made up of several types of tubes: plain, longitudinally finned, etc. Shell and Tube
heat exchangers are typically used for high pressure applications (with pressures
greater than 30 bar and temperatures greater than 260�C). This is because the shell
and tube heat exchangers are robust due to their shape.

A variety of different internal constructions are used in shell and tube
exchangers, depending on the desired heat transfer and pressure drop performance
and the methods employed to reduce thermal stresses, to prevent leakages, to
provide for ease of cleaning, to contain operating pressures and temperatures, to
control corrosion, to accommodate highly asymmetric flows and so on. Shell and
tube exchangers are classified and constructed in accordance with the widely used
TEMA (Tubular Exchanger Manufacturers Association) standards, other standards
in Europe and elsewhere and ASME (American Society of Mechanical Engineers)
boiler and pressure vessel codes [18].

There are several thermal design features that are to be taken into account when
designing the tubes in the shell and tube heat exchangers. The optimum thermal
design of a shell and tube heat exchanger involves the consideration of many
interacting design parameters which can be summarized as follows:

• Process fluid assignments to shell side or tube side.
• Selection of stream temperature specifications.
• Setting shell side and tube side pressure drop design limits.
• Setting shell side and tube side velocity limits.
• Selection of heat transfer models and fouling coefficients for shell and tube side.
• Selection of heat exchanger TEMA layout and number of passes.
• Specification of tube parameters—size, layout, pitch and material.
• Setting upper and lower design limits on tube length.
• Specifications of shell side parameters materials baffle cut, baffle spacing and

clearances.
• Setting upper and lower design limits on shell diameter, baffle cut and baffles

spacing.

There are many previous studies on the optimization of heat exchanger. Several
investigators had used different optimization techniques considering different
objective functions to optimize heat exchanger design. Ravagnani et al. [19]
proposed a new methodology to include features such as pressure drop and fouling
effects which were usually neglected in grassroots as in retrofit designs. Pinch
analysis was used to obtain the heat exchangers network with the maximum energy
recovery, and a new systematic procedure was proposed to the identification and
loop breaking. Bell–Delaware method for the shell side was used to design the heat

208 7 Design Optimization of Selected Thermal



www.manaraa.com

exchangers. Results of an example show differences between heat exchangers,
with and without the detailed design, relative to heat transfer area, fouling and
pressure drop. The great contribution of this work was that Individual and global
heat transfer coefficients were always calculated, which is generally assumed in
the design step. The methodology proposed to the heat exchangers design assured
the minor heat exchanger according to TEMA standards, contributing to the
minimization of the heat exchanger network global annual cost. This method
considered pressure drops and fouling effects, hence presents values more realistic
then those neglecting the equipment detailed design.

Pariyani et al. [20] presented randomized algorithm with stream splitting for
design of heat exchanger networks in this work. The algorithm had provisions for
splitting any one of the process streams. Three benchmark problems taken from
the literature were studied. The results obtained from study indicated the strength
of the randomization method in finding a cost-effective network.

Babu and Munawar [21] applied Differential evolution (DE) and its various
strategies for the optimal design of shell and tube heat exchangers. Minimum heat
transfer area was main objective in heat exchanger design. In the presented study
DE, an improved version of genetic algorithms (GAs) had been successfully
applied with different strategies for many design configurations using Bell’s
method to find the heat transfer area. In the application of DE, 9,680 combinations
of the key parameters have been considered. For this optimal design problem, it
has been found that DE, an exceptionally simple evolution strategy, is significantly
faster compared to GA and yields the global optimum for a wide range of the key
parameters. Ravagnani and Caballero [22] presented an optimization model for the
synbook of heat exchanger networks (HEN) including the detailed design of the
equipments formulated as a decomposition method. The optimization model was
based on area, energy and pumping costs. The algorithm combined two distinct
models, in a decomposition method, a mixed integer nonlinear programing
(MINLP) superstructure simultaneous optimization model for the heat exchanger
network synbook considering stream splitting and a MINLP model for the detailed
equipment design, following rigorously the standards of the TEMA. Two examples
were used to test the algorithm developed, and the results confirmed the
achievement of the optimum HEN configuration with the detailed heat exchangers
design, following the TEMA standards.

Fakheri [23] proposed methodology for Optimization of Shell and Tube Heat
Exchangers in Series. For a given total rate of heat transfer and the known inlet and
exit temperatures of the hot and cold fluids, the total area of the heat exchanger
network was minimized. In the proposed methodology, the heat exchangers were
assumed to be different. This is a generalization compared to the traditional
approach where all the heat exchangers are taken to have the same area and the
same LMTD (Log Mean Temperature Difference) correction factor. In the tradi-
tional approach the minimum number of identical shells, for which a feasible
solution exists and meets the design criteria, was used as the optimum solution.
The proposed optimization approach shows that using larger number of smaller
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heat exchangers results in less overall heat exchanger area due to the more efficient
operation of the individual heat exchangers.

Gholap and Khan [24] proposed a detailed thermodynamic model for a
refrigerator based on an irreversible Carnot cycle is developed with the focus on
forced air heat exchangers. A multi-objective optimization procedure was imple-
mented to find optimal design values for design variables. Minimizations of energy
consumption and material cost were the two objectives considered. Since these
objectives were conflicting, no single design will satisfy both simultaneously.
The result of this research was a set of multiple optimum solutions, which were
called ‘Pareto optimal solutions’. Air and refrigerant side correlations were
combined with an elemental approach to model the heat exchangers. This paper
has presented a detailed design model development. A limited validation is pre-
sented with experimental test data obtained from a typical household refrigerator.
An optimization algorithm requires several evaluations of such models. Response
surface based metamodels for objective functions were used to save computational
effort. A genetic algorithm based optimization tool was used for multi-criteria
optimization.

Caputo et al. [25] proposed a procedure for optimal design of shell and tube
heat exchangers, which utilized a genetic algorithm to minimize the total cost of
the equipment including capital investment and the sum of discounted annual
energy expenditures related to pumping. In order to verify the capability of the
proposed method, three case studies were also presented showing that significant
cost reductions were feasible with respect to traditionally designed exchangers.
In particular, in the examined cases a reduction of total costs up to more than 50%
was observed. Soltan et al. [26] proposed a computer program that enables
designers to determine the optimum baffle spacing for segmentally baffled shell
and tube condensers. Total costs of heat transfer area and pumping power were
involved to perform objective function, using a weight factor, which depends on
the economical conditions of the desired location. As a result, a set of correlation
was presented to determine the optimum baffle spacing, which could be considered
as a complementary to HEDH recommendations.

Costa and Queiroz [27] formulated problem on design optimization of shell and
tube heat exchangers which consists of the minimization of the thermal surface
area for a certain service, involving discrete decision variables. Additional con-
straints represented geometrical features and velocity conditions were complied in
order to reach a more realistic solution for the process task. The optimization
algorithm was based on a search along the tube count table where the established
constraints and the investigated design candidates were employed to eliminate
non-optimal alternatives, thus reducing the number of rating runs executed. The
obtained results illustrated the capacity of the proposed approach to direct the
optimization toward more effective designs, considering important limitations
usually ignored in the literature.

Thirumarimurugan et al. [28] investigated on comparative heat transfer study
on a solvent and solutions were made using 1–1 Shell and Tube Heat Exchanger.
Steam is the hot fluid; whereas Water and Acetic acid Water miscible solution
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serves as cold fluid. A series of runs were made between steam and water, steam
and Acetic acid solution. In addition to, the volume fraction of Acetic acid was
varied and the experiment was held. The flow rate of the cold fluid is maintained
from 120 to 720 lph and the volume fraction of Acetic acid was varied from 10 to
50%. Experimental results such as exchanger effectiveness, overall heat transfer
coefficients were calculated. A mathematical model was developed for the outlet
temperatures of both the Shell and Tube side fluids and was simulated using
MATLAB program. The model was compared with the experimental findings and
found to be valid.

Ponce et al. [29] presented an approach based on GAs for the optimal design of
shell and tube heat exchangers. The approach used the Bell–Delaware method for
the description of the shell side flow with no simplifications. The optimization
procedure involved the selection of the major geometric parameters such as the
number of tube-passes, standard internal and external tube diameters, tube layout
and pitch, type of head, fluids allocation, number of sealing strips, inlet and outlet
baffle spacing, and shell side and tube side pressure drops. The methodology took
into account the geometric and operational constraints typically recommended by
design codes. The examples analyzed showed that GAs provide a valuable tool
for the optimal design of heat exchangers. The use of GA together with the
Bell–Delaware method allows several design factors, typically specified from
experience and later subject to a rating test, to be calculated as part of the optimum
solution. Genetic algorithms provide better expectations to detect global optimum
solutions than gradient methods, in addition to being more robust for the solution
of non-convex problems.

Guo et al. [30] applied the field synergy principle to the optimization design of
the shell and tube heat exchanger with segmental baffles. The field synergy number
which is defined as the indicator of the synergy between the velocity field and the
heat flow was taken as the objective function. The genetic algorithm was employed
to solve the heat exchanger optimization problems with multiple design variables.
The field synergy number maximization approach for heat exchanger optimization
design was thus formulated. In comparison with the initial design, the optimal
design leads to a significant cost cut on the one hand and an improvement of the
heat exchanger performance on the other hand. The comparison with the tradi-
tional heat exchanger optimization design approach with the total cost as the
objective function showed that the field synergy number maximization approach
was more advantageous. From the work he has concluded that the field synergy
number maximization approach was more attractive in the sense that the reduction
of water consumption or the heat exchanger effectiveness improvement can lead to
much more profit than the total cost cut achieved by the traditional heat exchanger
optimization design approach with the total cost as the objective function.

Sanaye and Hajabdollahi [31] proposed optimization of shell and tube heat
exchanger. The effectiveness and cost are two important parameters in heat
exchanger design. The total cost includes the capital investment for equipment
(heat exchanger surface area) and operating cost (for energy expenditures related
to pumping). Tube arrangement, tube diameter, tube pitch ratio, tube length, tube
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number, baffle spacing ratio as well as baffle cut ratio were considered as seven
design parameters. For optimal design of a shell and tube heat exchanger, it was
first thermally modeled using NTU method while Belle Delaware procedure
was applied to estimate its shell side heat transfer coefficient and pressure drop.
Fast and elitist non-dominated sorting genetic algorithm (NSGA-II) with contin-
uous and discrete variables was applied to obtain the maximum effectiveness (heat
recovery) and the minimum total cost as two objective functions. The results of
optimal designs were a set of multiple optimum solutions, called ‘Pareto optimal
solutions’. The sensitivity analysis of change in optimum effectiveness and total
cost with change in design parameters of the shell and tube heat exchanger was
also performed and the results are reported. In this study the effectiveness and total
cost were considered as two objective functions. Total cost included the invest-
ment cost of heat transfer surface area as well as the operating cost for the
pumping power.

To maximize the effectiveness value and to minimize the total cost, seven
design parameters including, tube arrangement, tube diameter, tube pitch ratio,
tube length, tube number, baffle spacing ratio as well as baffle cut ratio were
selected. Design parameters (decision variables) and the range of their variations
calculated. The number of iterations for finding the global extremum in the whole
searching domain was about 8.2 9 1015. The genetic algorithm optimization was
performed for 200 generations, using a search population size of 100 individuals,
crossover probability of 0.9, gene mutation probability of 0.035 and controlled
elitism value of 0.65.

Hosseini and Ceylan [32] obtained the heat transfer coefficient and pressure
drop on the shell side of a shell and tube heat exchanger experimentally for three
different types of copper tubes (smooth, corrugated and with micro-fins). Also,
experimental data has been compared with theoretical data available. Correlations
have been suggested for both pressure drop and Nusselt number for the three tube
types. A shell and tube heat exchanger of an oil cooler used in a power transformer
has been modeled and built for this experimental work in order to investigate the
effect of surface configuration on the shell side heat transfer as well as the pressure
drop of the three types of tube bundles. The bundles with the same geometry,
configuration, number of baffles and length, but with different external tube sur-
faces inside the same shell were used for the experiment. Corrugated and micro-fin
tubes have shown degradation of performance at a Reynolds number below a
certain value (Re \ 400). At a higher Reynolds number the performance of the
heat exchanger greatly improved for micro-finned tubes. Patel and Rao [33] pro-
posed the use of PSO for design optimization of shell and tube heat exchangers
from economic view point. Minimization of total annual cost was considered as an
objective function. Three design variables such as shell internal diameter, outer
tube diameter and baffle spacing were considered for optimization. Four different
case studies were presented to demonstrate the effectiveness and accuracy of the
proposed algorithm. The results of optimization using PSO technique were com-
pared with those obtained by using genetic algorithm.
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From this literature survey it is clear that shell and tube heat exchanger opti-
mization was attempted by many non-traditional optimization algorithms like GA,
PSO, DE and ACO in the past. Now an attempt is made to implement the shuffled
frog leaping algorithm to achieve shell and tube heat exchanger optimization.

In the present study the fluid inlet and outlet temperatures and flow rates are
considered as design specifications while shell inside diameter (Ds), tube outside
diameter (do) and baffle spacing (B) are considered as design variables. The fol-
lowing nomenclature is used:

A heat exchanger surface area (m2)
a1 numerical constant (€)
a2 numerical constant (€/m2)
a3 numerical constant
as shell side pass area (m2)
B baffles spacing (m)
C numerical constant
Ce energy cost (€/kW h)
Ci capital investment (€)
cl clearance (m)
Co annual operating cost (€/yr)
Cod total discounted operating cost (€)
Cp specific heat (J/kg K)
Ctot total annual cost (€)
de equivalent shell diameter (m)
di tube inside diameter (m)
do tube outside diameter (m)
Ds shell inside diameter (m)
F temperature difference correction factor
fs shell side friction coefficient
ft tube side friction coefficient
H annual operating time (h/yr)
hs shell side convective coefficient (W/m2 K)
ht tube side convective coefficient (W/m2 K)
i annual discount rate (%)
k Thermal conductivity (W/m K)
L tubes length (m)
LMTD Logarithmic mean temperature difference (K)
ms shell side mass flow rate (kg/s)
mt tube side mass flow rate (kg/s)
Nt number of tubes
n number of tube-passes
n1 numerical constant
ny equipment life (yr)
P pumping power (W)
Prs shell side Prandtl number
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Prt tube side Prandtl number
Q heat duty (W)
Res shell side Reynolds number
Ret tube side Reynolds number
Rfs shell side fouling resistance (m2 K/W)
Rft tube side fouling resistance (m2 K/W)
St tube pitch (m)
Tci cold fluid inlet temperature (K)
Tco cold fluid outlet temperature (K)
Thi hot fluid inlet temperature (K)
Tho hot fluid outlet temperature (K)
U overall heat transfer coefficient (W/m2 K)
vs shell side fluid velocity (m/s)
vt tube side fluid velocity (m/s)
Dh heat transfer difference (W/m2 K)
DP Pressure drop (Pa)
DPtube elbow Tube elbow pressure drop
DPtube length Tube length pressure drop (Pa)

Greek letters
l Dynamic viscosity (Pa s)
q density (kg/m3)
g overall pumping efficiency

Subscript
c cold stream
e equivalent
h hot stream
i inlet
o outlet
s shell side
t tube side
wt wall

7.2.1 Mathematical Model

7.2.1.1 Heat Transfer

According to flow regime, the tube side heat transfer coefficient (ht) is computed
from following correlation (from Caputo et al. [25]; reprinted with permission
from Elsevier),
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ht ¼
kt

di
3:657þ

0:0677 Ret Prt
di
L

� �1:33

1þ 0:1 Prt Ret
di
L

� �0:3

1=3
2
4

3
5 ð7:31Þ

(If Ret \ 2,300)

ht ¼
kt

di

ft
8 Ret � 1000ð Þ Prt

1þ 12:7 ft
8

� �1=2
Pr

2=3
t �1

� 	 1þ di

L

� 0:67

2

64

3

75 ð7:32Þ

(If 2,300 \ Ret \ 10,000, [10])

ht ¼ 0:027
kt

do
Re0:8

t Pr
1=3

t

lt

lwt

� 0:14

ð7:33Þ

(For Ret [ 10,000) where, ft is the Darcy friction factor given as,

ft ¼ 1:82 log 10Ret � 1:64
� ��2 ð7:34Þ

Ret is the tube side Reynolds Number and given by,

Ret ¼
qtvtdi

lt
ð7:35Þ

Flow velocity for tube side is found by,

vt ¼
mt

p
4

� �
d2

t qt

n

Nt

� 
ð7:36Þ

Nt is number of tubes and n is the number of tube-passes which can be found
approximately from the following equation,

Nt ¼ C
Ds

do

� n1

ð7:37Þ

C and n1 are coefficients taking values according to flow arrangement and number
of passes. Prt is the tube side prandtl number and given by,

Prt ¼
lt Cpt

kt
ð7:38Þ

Also, di = 0.8 do

Kern’s formulation for segmental baffle shell and tube exchanger is used for
computing shell side heat transfer coefficient hs,

hs ¼ 0:36
kt

de
Re0:55

s Pr
1=3

s

ls

lwts

� 0:14

ð7:39Þ
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where, de is the shell hydraulic diameter and computed as,

de ¼
4 S2

t �
p d2

o
4

� 	

pdo
ð7:40Þ

(For Square pitch)

de ¼
4 0:43S2

t �
0:5 p d2

o
4

� 	

0:5pdo
ð7:41Þ

(For Triangular pitch) Cross-section area normal to flow direction is determined by,

As ¼ Ds B 1� do

St

� 
ð7:42Þ

Flow velocity for the shell side can be obtained from,

vs ¼
ms

qs As
ð7:43Þ

Reynolds number for shell side follows,

Res ¼
msde

As ls
ð7:44Þ

Prandtl number for shell side follows,

Pr
s
¼ ls Cps

ks
ð7:45Þ

The overall heat transfer coefficient (U) depends on both the tube side and shell
side heat transfer coefficient and fouling resistances are given by,

U ¼ 1
1
hs

� 	
þ Rfs þ do

di
Rft þ 1

ht

� 	 ð7:46Þ

Considering the cross flow between adjacent baffle, the logarithmic mean
temperature difference (LMTD) is determined by,

LMTD ¼ Thi � Tcoð Þ � Tho � Tcið Þ
ln Thi�Tco

Tho�Tci

� 	 ð7:47Þ

The correction factor F for the flow configuration involved is found as a
function of dimensionless temperature ratio for most flow configuration of interest.
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F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1
R� 1

r
ln 1�P

1�PR

� �

ln
2�P Rþ1�

ffiffiffiffiffiffiffiffi
R2þ1
pð Þ

2�P Rþ1þ
ffiffiffiffiffiffiffiffi
R2þ1
pð Þ

�  ð7:48Þ

where R is the correction coefficient given by,

R ¼ Thi � Thoð Þ
Tco � Tcið Þ ð7:49Þ

P is the efficiency given by,

P ¼ Tco � Tcið Þ
Thi � Tcið Þ ð7:50Þ

Considering overall heat transfer coefficient, the heat exchanger surface area
(A) is computed by,

A ¼ Q

U F LMTD
ð7:51Þ

For sensible heat transfer, the heat transfer rate is given by,

Q ¼ mhCph Thi � Thoð Þ ¼ mcCpc Tco � Tcið Þ ð7:52Þ

Based on total heat exchanger surface area (A), the necessary tube length (L) is,

L ¼ A

p do Nt
ð7:53Þ

7.2.1.2 Pressure Drop

The pressure drop allowance in heat exchanger is the static fluid pressure which
may be expended to drive the fluid through the exchanger. In all heat exchanger
there is close physical and economical affinity between heat transfer and pressure
drop. For a constant heat capacity in the heat exchanger that is to be designed,
increasing the flow velocity will cause a rise of heat transfer coefficient which
result in compact exchanger design and lower investment cost. However increase
of flow velocity will cause more pressure drop in heat exchanger which results in
additional running cost. For this reason when designing a heat exchanger pressure
drop must be considered with heat transfer and best solution for the system must be
found.

Tube side pressure drop include distributed pressure drop along the tube length
and concentrated pressure losses in elbows and in the inlet and out let nozzle.

DPt ¼ DPtube length þ DPtube elbow ð7:54Þ
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DPt ¼
qtv

2
t

2
L

di
ft þ p

� 
n ð7:55Þ

Different value of constant p is considered by different authors. Kern [34]
assumed p = 4, while Sinnot [35] assumed p = 2.5. The shell side pressure drop
is,

DPs ¼ fs
qsv

2
s

2

� 
L

B

� 
Ds

de

� 
ð7:56Þ

where,

fs ¼ 2 bo Re�0:15
s ð7:57Þ

And bo = 0.72 valid for Res \ 40,000.
Considering pumping efficiency (g), pumping power computed by,

P ¼ 1
g

mt

rt
DPt þ

ms

rs
DPs

� 
ð7:58Þ

7.2.1.3 Objective Function

Total cost Ctot is taken as the objective function, which includes capital investment
(Ci), energy cost (Ce), annual operating cost (Co) and total discounted operating
cost (Cod).

Ctot ¼ Ci þ Cod ð7:59Þ

Adopting Hall’s correlation, the capital investment Ci is computed as a function
of the exchanger surface area.

Ci ¼ a1 þ a2Aa=3 ð7:60Þ

where, a1 = 8,000, a2 = 259.2 and a3 = 0.93 for exchanger made with stainless
steel for both shell and tubes.

The total discounted operating cost related to pumping power to overcome
friction losses is computed from the following equation,

Co ¼ P CeH ð7:61Þ

Cod ¼
Xny

x¼1

Co

1þ ið Þx ð7:62Þ
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Based on all above calculations, total cost is computed. The procedure is
repeated computing new value of exchanger area (A), exchanger length (L), total
cost (Ctot) and a corresponding exchanger architecture meeting the specifications.
Each time the optimization algorithm changes the values of the design variables
do, Ds and B in an attempt to minimize the objective function.

Following case studies have been considered for demonstration and validation
of the Shuffled Frog Leaping Algorithm.

7.2.2 Case Study

7.2.2.1 (4.34 MW Duty) Methanol–Brackish Water Exchanger

Table 7.5 shows input parameters and physical properties for this case study taken
from Sinnot [35]. It is a 4.34 MW duty, Methanol-Brackish water heat exchanger.
Sea water is allocated to tube side as the mass flow rate of sea water is much higher
compared to methanol. Also it is easy to clean tubes from sludge by chemical wash.
Procedure explained in Sect. 7.2.1 is used for calculating other geometric parame-
ters, pressure drops on both shell and tube side and overall heat transfer coefficient of
heat exchanger. The shell side inside diameter is not more than 1.5 m, the tubes outer
diameter ranges from 0.015 to 0.15 m and the baffle spacing should not be more than
0.5 m. The pressure drops and calculated heat transfer is used to find total annual
operating and overhead costs. Tube side and shell side velocities and the ratio of
baffle spacing to shell side inner diameter are considered as constraints. Tube side
velocities for water and similar fluids ranges from 0.5 to 2.5 m/s, shell side velocities
generally ranges from 0.2 to 1.5 m/s and the ratio of baffle spacing to shell side inner
diameter ranges from 0.2 to 1. Other design parameters are based on the design
variables considered. All the values of discounted operating costs are computed with
ny = 10 years. Annual discount rate (i) = 10%. Energy cost (Ce) = 0.12 €/kW h.
An annual work hours H = 7,000 h/yr. This problem had been solved by Caputo
et al. [25] using GA and Patel and Rao [33] using PSO technique. Minimization of
total annual cost is considered as objective. The process input and physical prop-
erties for this case study are as follows:

Table 7.5 Process
parameters and physical
properties for case study
7.2.2.1

Fluid allocation Shell side Tube side

Fluid Methanol Sea water
Mass flow rate (kg/s) 27.80 68.90
Inlet temperature (�C) 95.00 25.00
Outlet temperature (�C) 40.00 40.00
Heat capacity (kJ/kg K) 750 995
Density (kg/m3) 2.84 4.2
Viscosity (Pa s) 0.00034 0.0008
Thermal conductivity(W/m K) 0.19 0.59
Fouling factor (m2 K/W) 0.00033 0.0002
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The following parameters of optimization are selected after various trials for
this case study.

Number of memeplexes: 10; number of frogs in each memeplexes: 10 and
number of iterations: 100. The best results obtained by SFLA in this work for this
case study are compared with the literature results of Sinnot et al. (1996) and with the
best results of Caputo et al. [25] and Patel and Rao [33] and are presented in
Table 7.6. The best solution by SFLA is 19.56% superior to the solution previously
reported in the literature. In this case, reduction in heat transfer area is observed and
as a result capital investment is reduced by 6.37% as compared to the PSO approach
considered by Patel and Rao [33]. However, increment in tube side pressure losses
results in increase in operating cost. Therefore, a cumulative effect of reduction in
capital investment and increment in operating expense led to a reduction of the total
cost of about 3.09% compared to PSO approach considered by Patel and Rao [33].

7.2.2.2 (0.46 MW Duty) Distilled Water-Raw Water Exchanger

The case study is based on the design problem discussed in Sinnot [35]. The shell
side inside diameter is not more than 1.5 m, the tubes outer diameter ranges from
0.015 to 0.61 m and the baffle spacing should not be more than 0.5 m. Tube side

Table 7.6 Optimal heat
exchanger geometry using
different optimization
methods for case study
7.2.2.1

Literature
(Sinnot [35])

GA [25] PSO [33] SFLA

L(m) 4.83 3.379 3.115 18.35
do mð Þ 0.02 0.016 0.015 0.0747
B(m) 0.356 0.5 0.424 0.4283
Ds mð Þ 0.894 0.83 0.81 0.7954
Nt 918 1,567 1,658 47
vt m=sð Þ 0.75 0.69 0.67 1.072
Ret 14,925 10,936 10,503 79,678
Prt 5.7 5.7 5.7 5.6949
htðw=m2Þ 3,812 3,762 3,721 3318.7
DPt 6,251 4,298 4,171 9483.3

Asðm2Þ 0.032 0.0831 0.0687 0.0681
De(m) 0.014 0.011 0.0107 0.0532
vs m=sð Þ 0.58 0.44 0.53 0.544
Res 18,381 11,075 12,678 63,807
Prs 5.1 5.1 5.1 5.0821
hsðw=m2Þ 1,573 1,740 1950.8 999.99
DPs 35,789 13,267 20,551 19,487
U(w/m2) 615 660 713.9 483.90
A(m2) 278.6 262.8 243.3 198.28
Ci(€) 51,507 49,259 46,453 43,491
Co(€/yr) 2,111 947 1038.7 1362.8
Cod(€) 12,937 5,818 6778.2 8373.7
Ctot(€) 64,480 55,077 53523.1 51,865
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and shell side velocities and the ratio of baffle spacing to shell side inner diameter
are considered as constraints. Tube side velocities for water and similar fluids
ranges from 0.5 to 2.5 m/s, shell side velocities generally ranges from 0.2 to
1.5 m/s and and the ratio of baffle spacing to shell side inner diameter ranges from
0.2 to 1. Other design parameters are based on the design variables considered.
All the values of discounted operating costs are computed with ny = 10 years.
Annual discount rate (i) = 10%. Energy cost (Ce) = 0.12 €/kW h. An annual
work hours H = 7,000 h/yr. This problem had been solved by Caputo et al. [25]
using GA and Patel and Rao [33] using PSO technique. Minimization of total
annual cost is considered as objective. The process input and physical properties
for this case study are given in Table 7.7.

The following parameters of optimization are selected after various trials for
this case study. Number of memeplexes: 10; number of frogs in each memeplexes:
50 and number of iterations: 100. The best results obtained by SFLA in this work
for this case study are compared with the literature results of Sinnot [35] and with
the best results of Caputo et al. [25] and Patel and Rao [33] and are presented in
Table 7.8.

In this case decrease in heat transfer area is observed by 22.01% as a result
capital investment is decreased by 7.89% as compared to PSO approach Patel and
Rao [33]. The shell side and tube side pressure losses are increased as a result the
operating expenses are increased. A cumulative effect of decrease in capital
investment and increase in operating expense lead to a reduction of the total cost of
about 2.70% compared to the PSO approach used by Patel and Rao [33].

7.2.2.3 (1.44 MW Duty) Kerosene-Crude Oil Heat Exchanger

The case study is based on the design problem discussed in Sinnot [35]. The shell
side inside diameter is not more than 1.5 m, the tubes outer diameter ranges from
0.051 to 0.081 m and the baffle spacing should not be more than 0.5 m. Tube side
and shell side velocities and the ratio of baffle spacing to shell side inner diameter
are considered as constraints. Tube side velocities for water and similar fluids

Table 7.7 Process
parameters and physical
properties for case study
7.2.2.2

Fluid location Shell side Tube side

Fluid Distilled water Raw water
Mass flow rate (kg/s) 22.07 35.31
Inlet temperature (�C) 33.90 23.90
Outlet temperature (�C) 29.40 26.70
Density (kg/m3) 995 999
Heat capacity (kJ/kg K) 4.18 4.18
Viscosity (Pa s) 0.0008 0.00092
Thermal conductivity(W/m K) 0.62 0.62
Fouling factor (mK/W) 0.00017 0.00017
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ranges from 0.5 to 2.5 m/s, shell side velocities generally ranges from 0.2 to
1.5 m/s and Rbs ranges from 0.2 to 1. Other design parameters are based on the
design variables considered. All the values of discounted operating costs are
computed with ny = 10 years. Annual discount rate (i) = 10%. Energy cost
(Ce) = 0.12 €/kW h. Annual work hours H = 7,000 h/yr. This problem had been
solved by Caputo et al. [25] using GA and Patel and Rao [33] using PSO tech-
nique. Minimization of total annual cost is considered as objective. The process
input and physical properties for this case study are given in Table 7.9.

The following parameters of optimization are selected after various trials for
this case study. Number of memeplexes: 10; number of frogs in each memeplexes:
50 and number of iterations: 100. The best results obtained by SFLA in this work
for this case study are compared with the literature results of Sinnot [35] and with
the best results of Caputo et al. [25] and Patel and Rao [33] and are presented in
Table 7.10. In this case, decrease in heat transfer area is observed by 8.21% and as
a result the capital investment is decreased by 5.81% as compared to PSO
approach used by Patel and Rao [33]. The shell side and tube side pressure losses

Table 7.8 Optimal heat
exchanger geometry using
different optimization
methods for case study
7.2.2.2

Literature
(Sinnot [35])

GA [25] PSO [33] SFLA

L(m) 4.88 1.548 1.45 11.84
do mð Þ 0.013 0.016 0.0145 0.0533
B(m) 0.305 0.44 0.423 0.1494
Ds mð Þ 0.387 0.62 0.59 0.4199
St 0.023 0.02 0.0181 0.0666
Nt 160 803 894 24
vt m=sð Þ 1.76 0.68 0.74 1.1171
Ret 36,400 9,487 9,424 13,239
Prt 6.2 6.2 6.2 5.64
htðw=m2Þ 6,558 6,043 5,618 641.09
ft 0.023 0.031 0.0314 0.0291
DPt 62,812 3,673 4,474 12,964
Asðm2Þ 0.0236 0.0541 0.059 0.0125
De mð Þ 0.013 0.011 0.0103 0.0379
vs m=sð Þ 0.94 0.41 0.375 0.5176
Res 16,200 8,039 4,814 41,728
Prs 5.4 5.4 5.4 7.6

hsðw=m2Þ 5,735 3,476 4088.3 799.12
fs 0.337 0.374 0.403 0.2919
DPs 6768.4 4,365 4,721 28,651
U(w/m2) 1,471 1,121 1,177 218.643
A(m2) 46.6 62.5 59.15 46.13
Ci(€) 16,549 19,163 18,614 17,144
Co(€/yr) 4,466 272 276 425.94
Cod(€) 27,440 1,671 1,696 2617.3
Ctot(€) 43,989 20,834 20,310 19,761
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are decreased and as a result the operating expenses are also decreased.
A cumulative effect of decrease in capital investment and decrease in operating
expense lead to a reduction of the total cost of about 5.64% compared to results by
PSO presented by Patel and Rao [33].

7.3 Design Optimization of Heat Pipe Using Grenade
Explosion Algorithm

A heat pipe is a simple device that can quickly transfer heat from one point to
another. They are also called as the ‘‘superconductors’’ of heat as they possess an
extra ordinary heat transfer capacity and rate [36]. Heat pipes are passive devices
that transport heat from a heat source (evaporator) to a heat sink (condenser) over
relatively long distances via the latent heat of vaporization of a working fluid. Heat
pipes are offer high effective thermal conductivities (5,000–200,000 W/mK),
energy-efficiency, light weight, low cost and the flexibility of many different size
and shape options. As passive heat transfer systems, heat pipes offer simple and
reliable operation, with high effective thermal conductivity, no moving parts,
ability to transport heat over long distances and quiet vibration-free operation [37].

A heat pipe is similar to a thermosyphon. Thermosyphon refers to a method of
passive heat exchange based on natural convection which circulates liquid without
the necessity of a mechanical pump. It differs from a thermosyphon by virtue of its
ability to transport heat against gravity by an evaporation–condensation cycle with
the help of porous capillaries that form the wick [38]. A heat pipe generally has
three sections: an evaporator section, an adiabatic (or transport) section and a
condenser section shown in Fig. 7.4. The major components of a heat pipe are a
sealed container, a wick structure and a working fluid. The wick structure is placed
on the inner surface of the heat pipe wall and is saturated with the liquid working
fluid and provides the structure to develop the capillary action for liquid returning
from the condenser to the evaporator section [37].

Table 7.9 Process
parameters and physical
properties for case study
7.2.2.3

Fluid location Shell side Tube side

Fluid Kerosene Crude oil
Mass flow rate (kg/s) 5.52 18.80
Inlet temperature (�C) 199.00 37.80
Outlet temperature (�C) 93.30 76.70
Density (kg/m3) 850 995
Heat capacity (kJ/kg K) 2.47 2.05
Viscosity (Pa s) 0.0004 0.00358
Thermal conductivity(W/m K) 0.13 0.13
Fouling factor (mK/W) 0.00061 0.00061
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With evaporator heat addition, the working fluid is evaporated as it absorbs an
amount of heat equivalent to the latent heat of vaporization; while in the condenser
section, the working fluid vapour is condensed. The mass addition in the vapour
core of the evaporator section and mass rejection in the condenser end results in a
pressure gradient along the vapour channel which drives the corresponding vapour
flow. Return of the liquid to the evaporator from the condenser is provided by the
wick structure. As vaporization occurs in the evaporator, the liquid meniscus
recedes correspondingly into the wick structure. The difference between the cap-
illary radii in the evaporator and condenser ends of the wick structure results in a
net pressure difference in the liquid- saturated wick. This pressure difference drives
the liquid from the condenser through the wick structure to the evaporator region,
thus allowing the overall process to be continuous [36].

Theoretically, heat pipe operation is possible at any temperature between the
triple state and the critical point of the working fluid utilized. Each heat pipe
application has a temperature range in which the heat pipe is intended to operate.
Therefore, the working fluid must be chosen to take into account this operating
temperature. Heat pipes can be built in almost any size and shape. Inside the

Table 7.10 Optimal heat
exchanger geometry using
different optimization
methods for case study
7.2.2.3

Literature
(Sinnot [35])

GA [25] PSO [33] SFLA

do mð Þ 0.025 0.02 0.015 0.6430
B(m) 0.127 0.12 0.112 0.3061
Ds mð Þ 0.539 0.63 0.59 0.7351
St 0.031 0.025 0.0187 0.8038
vt m=sð Þ 1.44 0.87 0.93 1.0168
Ret 8,287 4,068 3,283 56,794
Prt 55.2 55.2 55.2 6.2026
htðw=m2Þ 619 1,168 1,205 2,045
ft 0.033 0.041 0.044 0.0128
DPt 49,245 14,009 16,926 4,243

Asðm2Þ 0.0137 0.0148 0.0131 0.0450
De(m) 0.025 0.019 0.0149 0.4577
vs m=sð Þ 0.47 0.43 0.495 0.4929
Res 25,281 18,327 15,844 28,056
Prs 7.5 7.5 7.5 5.3935
hsðw=m2Þ 920 1,034 1,288 886.66
fs 0.315 0.331 0.337 0.2194
DPs 24,909 15,717 12,745 8979.3
U(w/m2) 317 376 409.3 471.35
A(m2) 61.5 52.9 47.5 43.60
Ci (€) 19,007 17,599 17,707 16,678
Co (€/yr) 1,304 440 523.3 345.03
Cod (€) 8,012 2,704 3215.6 2120.3
Ctot (€) 27,020 20,303 19922.6 18,798
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container of the heat pipe is a liquid under its own pressure that enters the pores of
the capillary material, wetting all internal surfaces. Applying heat at any point
along the surface of the heat pipe causes the liquid at that point to boil and enter a
vapour state. When that happens, the liquid picks up the latent heat of vaporiza-
tion. The gas which then has a higher pressure moves inside the sealed container to
a colder location where it condenses. Thus, the gas gives up the latent heat of
vaporization and moves heat from the input to the output end of the heat pipe. Heat
pipes have an effective thermal conductivity many thousands of times that of
copper. The heat transfer or transport capacity of a heat pipe is specified by
its axial power rating (APR). It is the energy moving axially along the pipe.
The larger the heat pipe diameter, greater is the APR. Similarly, longer the heat
pipe lesser is the APR.

The three basic components of a heat pipe are: (1) Container, (2) Working
fluid and (3) Wick or capillary structure. They all work together to transfer heat
more efficiently and evenly. The wick structure lines the inner surface of the
heat pipe shell and is saturated with the working fluid. The wick provides
the structure to develop the capillary action for the liquid returning from the
condenser (heat output/sink) to the evaporator (heat input/source). Since the heat
pipe contains a vacuum, the working fluid will boil and take up latent heat at
well below its boiling point at atmospheric pressure. Water, for instance, will
boil at just above 273 K (0�C) and start to effectively transfer latent heat at this
low temperature.

Selection of the container material depends on many factors [36]. These are
given below:

• Compatibility (both with working fluid and external environment)
• Strength to weight ratio
• Thermal conductivity
• Ease of fabrication, including welding, machinability and ductility
• Porosity

Fig. 7.4 Conceptual drawing of a conventional heat pipe in operation (from Sousa et al. [39];
reprinted with permission from Elsevier)
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• Wet ability
• The material should be nonporous to prevent the diffusion of vapour.

Heat pipes can be constructed from a variety of different materials. Thermacore
has constructed heat pipes from aluminum, copper, titanium, Monel, stainless
steel, inconel and tungsten. The most common for electronics cooling applications
is copper. The choice of heat pipe containment material is largely dependent on the
compatibility with the working fluid.

The prime requirements of suitable working fluids are:

• Compatibility with wick and wall materials
• Good thermal stability
• Wetability of wick and wall materials
• Vapour pressure not too high or low over the operating temperature range
• High latent heat
• High thermal conductivity
• Low liquid and vapour viscosities
• High surface tension
• Acceptable freezing or pour point

The selection of the working fluid must also be based on thermodynamic
considerations which are concerned with the various limitations to heat flow
occurring within the heat pipe line, viscous, sonic, capillary, entrainment and
nucleate boiling levels. In heat pipe design, a high value of surface tension is
desirable in order to enable the heat pipe to operate against gravity and to generate
a high capillary driving force. In addition to high surface tension, it is necessary
for the working fluid to wet the wick and the container material that is contact
angle should be zero or very small. The vapour pressure over the operating tem-
perature range must be sufficiently great to avoid high vapour velocities, which
tend to setup large temperature gradient and cause flow instabilities.

A high latent heat of vaporization is desirable in order to transfer large amounts
of heat with minimum fluid flow, and hence to maintain low pressure drops within
the heat pipe. The thermal conductivity of the working fluid should preferably be
high in order to minimize the radial temperature gradient and to reduce the possi-
bility of nucleate boiling at the wick or wall surface. The resistance to fluid flow will
be minimized by choosing fluids with low values of vapour and liquid viscosities.

7.3.1 Case Study

This problem was proposed by Sousa et al. [39]. In its basic form, the heat pipe is a
hermetically sealed tube-type container with a wick structure placed on its internal
walls and filled with a working fluid. In Fig. 7.4, a drawing of the heat pipe
concept is shown. Methanol is used as working fluid and stainless steel (SS 304) is

226 7 Design Optimization of Selected Thermal



www.manaraa.com

used as the material of the container since it is compatible. The wick is of the mesh
type and is made of SS 304.

The objective function to be minimized is the total mass of the heat pipe
(mtotal). The design variables are the wick‘s mesh number (Nm), the diameter of the
vapour core (dv), the thickness of wick (tw), the thickness of the container‘s wall
(tt), the length of the evaporator section (Le) and the length of the condenser
section (Lc). The length of the adiabatic section (La) is dependent on the appli-
cation and here was fixed equal to 0.5 m. The details of the optimization problem
with the objective function and the constraints are available in Sousa et al. [39].

Following are the upper and lower bounds of design variables imposed for this
case study:

• Mesh number of wick (Nm) ranging from 314 to 15,000;
• Diameter of wick wire (d) ranging from 0.025 to 1 mm;
• Diameter of vapour core (dv) ranging from 5 to 80 mm;
• Thickness of wick (tw) ranging from 0.05 to 10 mm;
• Length of evaporator section (Le) ranging from 50 to 400 mm;
• Length of condenser section (Lc) ranging from 50 to 400 mm;
• Thickness heat pipe tube (tt) ranging from 0.3 to 3 mm;
• Porosity (e) ranging from 0.0001 to 0.9999.

Table 7.11 Optimal results with decision variable by using GEM

Q �C Nm d (m)
e-5

dv (m) tw (m)
e-5

Le (m) Lc (m) tt (m)
e-4

e Mtotal

(kg)

25 -15 314.87 3.12 0.0270 7.80 0.0554 0.0807 1.11 0.9663 0.0522
50 -15 316.32 4.01 0.0318 8.75 0.0546 0.0501 1.02 0.8180 0.0605
75 -15 319.42 2.85 0.0363 6.14 0.0795 0.0619 1.02 0.9049 0.0663
100 -15 319.16 2.76 0.0392 7.37 0.1295 0.1353 1.01 0.9998 0.0812

25 0 316.14 2.62 0.0231 8.43 0.0528 0.0511 1.02 0.9656 0.0396
50 0 314.43 2.57 0.0306 5.87 0.0738 0.0527 1.06 0.9706 0.0546
75 0 315.48 3.48 0.0340 8.19 0.1224 0.0916 1.01 0.9447 0.0688
100 0 314.53 4.12 0.0375 8.67 0.1157 0.0880 1.00 0.8072 0.0819

25 15 316.60 3.89 0.0227 9.32 0.0754 0.0675 1.01 0.8657 0.0446
50 15 315.92 4.39 0.0286 9.30 0.0733 0.0770 1.17 0.9350 0.0617
75 15 315.51 3.10 0.0372 6.78 0.0956 0.1419 1.01 0.9340 0.0764
100 15 319.29 2.66 0.0397 5.63 0.1879 0.0740 1.20 0.7522 0.1045

25 30 316.87 2.78 0.0234 5.88 0.0990 0.0688 1.02 0.9821 0.0428
50 30 317.40 3.72 0.0283 7.89 0.0788 0.1147 1.15 0.8988 0.0639
75 30 316.38 4.33 0.0326 9.22 0.0869 0.0541 1.71 0.9592 0.0966
100 30 317.85 3.14 0.0397 8.04 0.0940 0.0875 1.77 0.7048 0.1400
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Table 7.11 shows the minimum mass of heat pipe for different heat inputs and
different sink temperatures with decision variables by using the grenade explosion
algorithm (GEM).

The best results produced by GEM are compared with the generalized extremal
optimization (GEO) algorithm used by Sousa et al. [39]. It is observed that, using
the GEM, there is a reduction of up to 30.32% in the mass of heat pipe (Mtotal) with
varying heat transfer rates (Q) at different temperatures.

The TLBO technique presented in this book can also be attempted for the
design optimization problems of shell and tube heat exchangers and the heat pipe.
However, this has not been taken up in the present work.
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Chapter 8
Conclusions

Mechanical elements such as gears, bearings, clutches, springs, power screws,
hydraulic cylinders, etc., are widely used in machine tools, transmission systems,
material handling equipments, automobiles, etc. Design of these mechanical ele-
ments includes an optimization process in which the designers consider certain
objectives such as strength, deflection, weight, wear, corrosion, etc. depending on
the requirements. It is required to optimize such mechanical elements to make the
whole assembly efficient and cost effective. Although, traditional optimization
techniques had been employed in the past to solve optimization problems in
mechanical design, these techniques have their own drawbacks. Considering the
drawbacks of the traditional optimization techniques, this book deals with the
applications of advanced optimization techniques, modifications in existing
advanced optimization techniques, hybridization of existing advanced optimiza-
tion techniques and development of a new optimization technique for the design
optimization of different mechanical elements.

Advanced optimization techniques such as PSO, ABC, BBO, DE and AIA are
applied to the mechanical design problems of gear train, radial ball bearing,
Belleville spring, multi-plate disc clutch brake, robot gripper, hydrostatic thrust
bearing and 4-stage gear train. The advanced optimization techniques have shown
better results than the methods (like GA, PSO or both) which were applied to the
same problems by the previous researchers.

The existing algorithms such as PSO, HEA and ABC are modified in this book
by incorporating changes in their basic search mechanisms. The modified algo-
rithms are tested on 13 unconstrained and 24 constrained benchmark functions,
and also on 20 mechanical design problems. It is observed from the results that
modification in PSO is effective in comparison to the basic PSO for all the con-
sidered problems in finding the best and the mean solutions. Modification in ABC
is effective for the unconstrained benchmark functions and mechanical design
problems, but it is slightly inferior to basic ABC for the constrained benchmark

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
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functions. Modification in HEA is also effective over basic HEA. The results of
modified PSO are slightly inferior to the basic ABC in finding the best solutions
but it is equivalent in finding the mean solutions. HEA and modified HEA are
inferior to the different variants of PSO and ABC in finding best and the mean
solutions.

Different hybrid algorithms are developed in this book by keeping ABC as the
base algorithm. Four different hybrid algorithms are developed viz. HPABC
(Hybrid Particle swarm based Artificial Bee Colony), HBABC (Hybrid
Biogeography based Artificial Bee Colony), HDABC (Hybrid Differential evolu-
tion based Artificial Bee Colony) and HGABC (Hybrid Genetic algorithm based
Artificial bee colony). All the algorithms are tested on unconstrained and con-
strained benchmark functions and also on mechanical design problems. The
hybridization of ABC with BBO and DE is very effective than the basic ABC in
finding the best solutions for the considered problems. Hybridization of ABC with
PSO and GA is not so effective than the basic ABC. Hybridization of ABC with
PSO is effective than all the variants of PSO. In searching the mean solution, only
hybridization of ABC with DE is effective than all other algorithms.

All the nature-inspired algorithms such as GA, PSO, BBO, ABC, DE, etc.
require algorithm-specific parameters to be set for their proper working in addition
to the common control parameters of population size, number of generations, and
number of elites. Proper selection of parameters is essential for the searching of the
optimum solution by these algorithms. A change in the algorithm parameters
changes the effectiveness of the algorithms. To avoid this difficulty an optimiza-
tion method, TLBO, which is algorithm-specific parameter free, is presented in
this book. This method works on the effect of influence of a teacher on learners.
Like other nature-inspired algorithms, TLBO is also a population-based method
which uses a population of solutions to proceed to the global solution. For TLBO,
the population is considered as a group of learners or a class of learners. The
process of working of TLBO is divided into two parts. The first part consists of
‘Teacher Phase’ and the second part consists of ‘Learner Phase’. The ‘Teacher
Phase’ means learning from the teacher and the ‘Learner Phase’ means learning
through the interaction between learners.

Performance of the TLBO method is checked with the other optimization
techniques available in the literature for different unconstrained and constrained
benchmark functions. The TLBO method has outperformed the results of other
algorithms from the literature for the unconstrained and constrained benchmark
functions. Moreover the TLBO method requires less number of function evalua-
tions than that of the other optimization algorithms to find the global optimum.
Convergence of the TLBO method is compared with the convergence of the ABC
algorithm for the unconstrained benchmark problems. The TLBO method has
shown better convergence than the ABC algorithm.

The TLBO method is applied to different mechanical element design optimi-
zation problems available in the literature. The results of the TLBO method are
compared with the results given by the other researchers for the mechanical ele-
ment design optimization problems. The TLBO method requires less number of
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function evaluations than that required by the other algorithms to find the optimum
results. The TLBO method is also applied successfully to the design optimization
of a two-stage thermoelectric cooler. This paves the way for the application of
TLBO for the design optimization of thermal equipment and devices.

The proposed TLBO method is also compared with the hybrid algorithms
developed in this book by considering all the unconstrained and the constrained
benchmark functions and also the mechanical element design optimization prob-
lems. It is observed from the comparison that the TLBO method has shown
superior results than the hybrid algorithms. Convergence plots are obtained for the
comparison of HDABC with TLBO for the problems having same mean solutions.
It is observed from the convergence graphs that the TLBO method has better
convergence than the HDABC hybrid method.

The performance of the proposed TLBO method is checked with the recent
and well-known optimization algorithms such as GA, ABC, PSO, HS, DE,
Hybrid-PSO, etc. by experimenting with different benchmark problems and
mechanical element design optimization problems with different characteristics.
The effectiveness of TLBO method is also checked for different performance
criteria, like success rate, mean solution, average function evaluations required,
convergence rate, etc. The results show better performance of TLBO method over
other natured-inspired optimization methods for the considered benchmark
functions and mechanical element design optimization problems. Also, the TLBO
method shows better performance with less computational efforts for the large
scale problems, i.e. problems with high dimensions. This method can be further
extended for the other engineering applications to check its suitability and
robustness.
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Appendix 1
Additional Demonstrative Examples
Solved by TLBO Algorithm

Now few benchmark functions are considered for demonstrating the steps of the
proposed TLBO algorithm. Population size of ten, number of generations of 3 and
two design variables are considered for demonstration. The results are shown only
for 3 generations. Actually, the final solutions for these benchmark functions can
be obtained after a sufficient number of generations.

A1.1 Example 1: Sphere Function

f ðxÞ ¼
Xn

i¼1

x2
i

� 5� xi� 5; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0

Generation: 1

Initial population Initial population cost

1.3638 -0.8495 2.5815
-0.7540 -2.0739 4.8695

1.8853 2.6906 10.7936
-3.7511 -0.0789 14.0766
-3.9645 0.9684 16.6554
-3.2782 -2.6811 17.9349

1.6293 -4.2761 20.9400
-4.5295 -1.2920 22.1860
-4.5299 2.2808 25.7218
-3.8581 -4.4127 34.3565
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Teacher Phase: TF 5 2; Teacher 5 1.3638 20.8495

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

2.6080 -0.6697 2.6080 -0.6697 7.2504 1.3638 -0.8495 2.5815

0.4903 -1.8941 0.4903 -1.8941 3.8280 0.4903 -1.8941 3.8280
3.1296 2.8704 3.1296 2.8704 18.0334 1.8853 2.6906 10.7936

-2.5068 0.1009 -2.5068 0.1009 6.2941 -2.5068 0.1009 6.2941

-2.7203 1.1482 -2.7203 1.1482 8.7182 -2.7203 1.1482 8.7182
-2.0340 -2.5013 -2.0340 -2.5013 10.3933 -2.0340 -2.5013 10.3933

2.8736 -4.0964 2.8736 -4.0964 25.0375 1.6293 -4.2761 20.9400

-3.2853 -1.1122 -3.2853 -1.1122 12.0300 -3.2853 -1.1122 12.0300
-3.2856 2.4606 -3.2856 2.4606 16.8496 -3.2856 2.4606 16.8496
-2.6138 -4.2329 -2.6138 -4.2329 24.7493 -2.6138 -4.2329 24.7493

Learner phase

Population
after learner
phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

2.5782 -1.4436 2.5782 -1.4436 8.7309 1.3638 -0.8495 2.5815
2.1657 -1.4911 2.1657 -1.4911 6.9137 0.4903 -1.8941 3.8280

-0.6155 -0.6222 -0.6155 -0.6222 0.7660 -0.6155 -0.6222 0.7660
-2.8892 2.2057 -2.8892 2.2057 13.2125 -2.5068 0.1009 6.2941
-5.1436 4.1704 -5.0000 4.1704 42.3920 -2.7203 1.1482 8.7182
-2.5611 0.3017 -2.5611 0.3017 6.6500 -2.5611 0.3017 6.6500

1.7730 -4.2776 1.7730 -4.2776 21.4413 1.6293 -4.2761 20.9400
-5.9137 0.5800 -5.0000 0.5800 25.3364 -3.2853 -1.1122 12.0300
-3.2854 0.1005 -3.2854 0.1005 10.8038 -3.2854 0.1005 10.8038
-2.4336 -3.6947 -2.4336 -3.6947 19.5737 -2.4336 -3.6947 19.5737

Generation: 2

Initial population Initial population cost

-0.6155 -0.6222 0.7660
1.3638 -0.8495 2.5815

-2.6575 -0.8495 2.5815
0.4903 -1.8941 3.8280

-2.5068 0.1009 6.2941
-2.5611 0.3017 6.6500
-2.7203 1.1482 8.7182
-3.2854 0.1005 10.8038
-3.2853 -1.1122 12.0300
-2.4336 -3.6947 19.5737
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Teacher Phase: TF 5 1; Teacher 5 2 0.6155 20.6222

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.5575 -0.5766 0.5575 -0.5766 0.6432 0.5575 -0.5766 0.6432

2.5367 -0.8039 2.5367 -0.8039 7.0811 1.3638 -0.8495 2.5815
-1.4845 -0.8039 -1.4845 -0.8039 2.8501 -2.6575 -0.8495 2.5815

1.6632 -1.8485 1.6632 -1.8485 6.1832 0.4903 -1.8941 3.8280

-1.3338 0.1466 -1.3338 0.1466 1.8006 -1.3338 0.1466 1.8006
-1.3881 0.3473 -1.3881 0.3473 2.0475 -1.3881 0.3473 2.0475
-1.5473 1.1939 -1.5473 1.1939 3.8195 -1.5473 1.1939 3.8195

-2.1125 0.1461 -2.1125 0.1461 4.4838 -2.1125 0.1461 4.4838
-2.1123 -1.0666 -2.1123 -1.0666 5.5996 -2.1123 -1.0666 5.5996
-1.2607 -3.6491 -1.2607 -3.6491 14.9055 -1.2607 -3.6491 14.9055

Learner phase

Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

2.1365 -0.2868 2.1365 -0.2868 4.6471 0.5575 -0.5766 0.6432

4.1181 -1.6384 4.1181 -1.6384 19.6435 1.3638 -0.8495 2.5815
-2.4764 -0.7133 -2.4764 -0.7133 6.6414 -2.6575 -0.8495 2.5815

0.3368 -1.6614 0.3368 -1.6614 2.8738 0.3368 -1.6614 2.8738

-0.9028 0.1468 -0.9028 0.1468 0.8367 -0.9028 0.1468 0.8367
-0.1484 -0.2414 -0.1484 -0.2414 0.0803 -0.1484 -0.2414 0.0803
-1.5243 1.2365 -1.5243 1.2365 3.8525 -1.5473 1.1939 3.8195

-1.6329 0.1464 -1.6329 0.1464 2.6877 -1.6329 0.1464 2.6877
-1.8683 -0.5902 -1.8683 -0.5902 3.8390 -1.8683 -0.5902 3.8390
-2.5849 -0.9949 -2.5849 -0.9949 7.6716 -2.5849 -0.9949 7.6716

Generation: 3

Initial population Initial population cost

-0.1484 -0.2414 0.0803
0.5575 -0.5766 0.6432

-0.6155 -0.6222 0.7660
-0.9028 0.1468 0.8367

1.3638 -0.8495 2.5815
-1.6329 0.1464 2.6877

0.3368 -1.6614 2.8738
-1.5473 1.1939 3.8195
-1.8683 -0.5902 3.8390
-2.5849 -0.9949 7.6716
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Teacher phase: TF 5 2; Teacher 5 2 0.1484 20.2414

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.6927 -0.1171 0.6927 -0.1171 0.4936 -0.1484 -0.2414 0.0803

1.3986 -0.4523 1.3986 -0.4523 2.1607 0.5575 -0.5766 0.6432
0.2257 -0.4979 0.2257 -0.4979 0.2989 0.2257 -0.4979 0.2989

-0.0617 0.2711 -0.0617 0.2711 0.0773 -0.0617 0.2711 0.0773

2.2049 -0.7252 2.2049 -0.7252 5.3876 1.3638 -0.8495 2.5815
-0.7917 0.2707 -0.7917 0.2707 0.7001 -0.7917 0.2707 0.7001

1.1779 -1.5371 1.1779 -1.5371 3.7503 0.3368 -1.6614 2.8738

-0.7062 1.3181 -0.7062 1.3181 2.2362 -0.7062 1.3181 2.2362
-1.0272 -0.4659 -1.0272 -0.4659 1.2722 -1.0272 -0.4659 1.2722
-1.7437 -0.8706 -1.7437 -0.8706 3.7987 -1.7437 -0.8706 3.7987

Learner phase

Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-0.6314 1.1720 -0.6314 1.1720 1.7721 -0.1484 -0.2414 0.0803

0.7420 -0.6925 0.7420 -0.6925 1.0302 0.5575 -0.5766 0.6432
0.1923 -0.4085 0.1923 -0.4085 0.2038 0.1923 -0.4085 0.2038
0.4241 0.2714 0.4241 0.2714 0.2535 -0.0617 0.2711 0.0773

0.9183 -0.6987 0.9183 -0.6987 1.3315 0.9183 -0.6987 1.3315
-0.8064 0.0913 -0.8064 0.0913 0.6586 -0.8064 0.0913 0.6586

2.0102 -2.2975 2.0102 -2.2975 9.3194 0.3368 -1.6614 2.8738

-0.7583 0.6796 -0.7583 0.6796 1.0369 -0.7583 0.6796 1.0369
-0.4104 0.0049 -0.4104 0.0049 0.1685 -0.4104 0.0049 0.1685
-1.5116 -0.7395 -1.5116 -0.7395 2.8318 -1.5116 -0.7395 2.8318
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Generation: 1

Initial population Initial population cost

-1.0264 -1.0271 3.1077
3.3883 0.2132 4.3237

-0.2588 -4.7546 6.2438
7.6304 0.0446 8.0154

-0.8446 -4.5691 9.2730
2.4142 4.5386 17.9099

-4.9259 3.4846 25.5753
5.7342 -3.6804 30.5190
3.6019 -6.7873 34.8361

-9.6584 4.1030 53.3903

Teacher phase: TF 5 2; Teacher 5 2 1.0264 21.0271

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-2.0713 -0.9968 -2.0713 -0.9968 5.1328 -1.0264 -1.0271 3.1077

2.3434 0.2434 2.3434 0.2434 3.1573 2.3434 0.2434 3.1573
-1.3037 -4.7243 -1.3037 -4.7243 12.1869 -0.2588 -4.7546 6.2438

6.5855 0.0749 6.5855 0.0749 7.1535 6.5855 0.0749 7.1535

-1.8895 -4.5389 -1.8895 -4.5389 15.0047 -0.8446 -4.5691 9.2730
1.3693 4.5689 1.3693 4.5689 12.1944 1.3693 4.5689 12.1944

-5.9708 3.5149 -5.9708 3.5149 30.4721 -4.9259 3.4846 25.5753

4.6893 -3.6502 4.6893 -3.6502 25.4563 4.6893 -3.6502 25.4563
2.5570 -6.7570 2.5570 -6.7570 26.5917 2.5570 -6.7570 26.5917

-10.7033 4.1333 -10.0000 4.1333 55.4664 -9.6584 4.1030 53.3903

A1.2 Example 2: Schwefel 2.22 Function

f ðxÞ ¼
Xn

i¼1

xij j þ
Yn

i¼1

xij j

� 100� xi� 100; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0
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Learner phase

Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

6.4764 -5.4861 6.4764 -5.4861 47.4924 -1.0264 -1.0271 3.1077

2.3023 1.5901 2.3023 1.5901 7.5532 2.3434 0.2434 3.1573
-0.2635 -4.7317 -0.2635 -4.7317 6.2420 -0.2635 -4.7317 6.2420

7.5028 1.8768 7.5028 1.8768 23.4612 6.5855 0.0749 7.1535

-0.5765 -4.1644 -0.5765 -4.1644 7.1419 -0.5765 -4.1644 7.1419
1.6883 3.1525 1.6883 3.1525 10.1629 1.6883 3.1525 10.1629

-0.5785 -4.1901 -0.5785 -4.1901 7.1927 -0.5785 -4.1901 7.1927

3.5026 -1.6806 3.5026 -1.6806 11.0696 3.5026 -1.6806 11.0696
2.6711 -6.5635 2.6711 -6.5635 26.7664 2.5570 -6.7570 26.5917
0.9506 -5.3288 0.9506 -5.3288 11.3450 0.9506 -5.3288 11.3450

Generation: 2

Initial population Initial population cost

-1.0264 -1.0271 3.1077
7.6341 -1.0271 3.1077
2.3434 0.2434 3.1573

-0.2635 -4.7317 6.2420
-0.5765 -4.1644 7.1419

6.5855 0.0749 7.1535
-0.5785 -4.1901 7.1927

1.6883 3.1525 10.1629
3.5026 -1.6806 11.0696
0.9506 -5.3288 11.3450

Teacher phase: TF 5 1; Teacher 5 2 1.0264 21.0271

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-1.3634 -0.7118 -1.3634 -0.7118 3.0458 -1.3634 -0.7118 3.0458

7.2971 -0.7118 7.2971 -0.7118 13.2032 7.6341 -1.0271 3.1077
2.0064 0.5587 2.0064 0.5587 3.6859 2.3434 0.2434 3.1573

-0.6005 -4.4165 -0.6005 -4.4165 7.6690 -0.2635 -4.7317 6.2420

-0.9135 -3.8492 -0.9135 -3.8492 8.2790 -0.5765 -4.1644 7.1419
6.2486 0.3901 6.2486 0.3901 9.0762 6.5855 0.0749 7.1535

-0.9155 -3.8749 -0.9155 -3.8749 8.3379 -0.5785 -4.1901 7.1927

1.3513 3.4677 1.3513 3.4677 9.5048 1.3513 3.4677 9.5048
3.1656 -1.3653 3.1656 -1.3653 8.8532 3.1656 -1.3653 8.8532
0.6136 -5.0136 0.6136 -5.0136 8.7036 0.6136 -5.0136 8.7036
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Learner phase

Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-2.0594 2.3724 -2.0594 2.3724 9.3176 -1.3634 -0.7118 3.0458

8.2026 -1.6245 8.2026 -1.6245 23.1519 7.6341 -1.0271 3.1077
4.4724 4.3066 4.4724 4.3066 28.0396 2.3434 0.2434 3.1573

-0.9285 -2.3012 -0.9285 -2.3012 5.3665 -0.9285 -2.3012 5.3665

-1.1636 -6.4886 -1.1636 -6.4886 15.2023 -0.5765 -4.1644 7.1419
6.6034 0.0561 6.6034 0.0561 7.0299 6.6034 0.0561 7.0299

-0.3157 -3.7913 -0.3157 -3.7913 5.3038 -0.3157 -3.7913 5.3038

0.8566 -2.2202 0.8566 -2.2202 4.9786 0.8566 -2.2202 4.9786
2.8941 -1.7535 2.8941 -1.7535 9.7225 3.1656 -1.3653 8.8532
0.1071 -4.6522 0.1071 -4.6522 5.2574 0.1071 0-4.6522 5.2574

Generation: 3

Initial population Initial population cost

-1.3634 -0.7118 3.0458
-1.0264 -1.0271 3.1077

2.3434 0.2434 3.1573
0.8566 -2.2202 4.9786
0.1071 -4.6522 5.2574

-0.3157 -3.7913 5.3038
-0.9285 -2.3012 5.3665

6.6034 0.0561 7.0299
-0.5765 -4.1644 7.1419

3.1656 -1.3653 8.8532

Teacher phase: TF 5 2; Teacher 5 2 1.3634 20.7118

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-2.6427 0.7969 -2.6427 0.7969 5.5456 -1.3634 -0.7118 3.0458

-2.3058 0.4817 -2.3058 0.4817 3.8980 -1.0264 -1.0271 3.1077
1.0641 1.7521 1.0641 1.7521 4.6806 2.3434 0.2434 3.1573

-0.4227 -0.7115 -0.4227 -0.7115 1.4350 -0.4227 -0.7115 1.4350

-1.1722 -3.1435 -1.1722 -3.1435 8.0006 0.1071 -4.6522 5.2574
-1.5950 -2.2826 -1.5950 -2.2826 7.5183 -0.3157 -3.7913 5.3038
-2.2078 -0.7925 -2.2078 -0.7925 4.7502 -2.2078 -0.7925 4.7502

5.3241 1.5648 5.3241 1.5648 15.2200 6.6034 0.0561 7.0299
-1.8558 -2.6557 -1.8558 -2.6557 9.4401 -0.5765 -4.1644 7.1419

1.8863 0.1434 1.8863 0.1434 2.3001 1.8863 0.1434 2.3001
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Learner phase

Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-1.6841 -0.4118 -1.6841 -0.4118 2.7895 -1.6841 -0.4118 2.7895

0.0980 -1.2503 0.0980 -1.2503 1.4709 0.0980 -1.2503 1.4709
0.8996 -0.2550 0.8996 -0.2550 1.3840 0.8996 -0.2550 1.3840
0.0438 -0.6903 0.0438 -0.6903 0.7644 0.0438 -0.6903 0.7644

-5.3532 -8.6095 -5.3532 -8.6095 60.0515 0.1071 -4.6522 5.2574
-0.3749 -3.8242 -0.3749 -3.8242 5.6329 -0.3157 -3.7913 5.3038
-3.3775 1.6251 -3.3775 1.6251 10.4912 -2.2078 -0.7925 4.7502

1.2595 -0.7025 1.2595 -0.7025 2.8470 1.2595 -0.7025 2.8470
-0.5266 -4.0930 -0.5266 -4.0930 6.7752 -0.5266 -4.0930 6.7752
-0.1810 0.1816 -0.1810 0.1816 0.3955 -0.1810 0.1816 0.3955
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Population after
teacher phase

Population after
checking
feasibility

Population
cost after
checking
feasibility
(1e4)

Population after
greedy selection

Population
cost after
greedy
selection
(1e3)

77.4899 -42.5756 65.5360 -42.5756 0.4822 43.2047 -33.3457 1.9639
-0.6104 -2.2897 -0.6104 -2.2897 0.0009 -0.6104 -2.2897 0.0088

77.5007 -40.4674 65.5360 -40.4674 0.4923 43.2156 -31.2374 2.0111
71.3391 -11.8992 65.5360 -11.8992 0.7172 37.0539 -2.6692 2.5553

-16.9564 45.2854 -16.9564 45.2854 0.109 -16.9564 45.2854 1.09

-17.9884 38.7008 -17.9884 38.7008 0.0753 -17.9884 38.7008 0.7526
-1.8518 -15.0643 -1.8518 -15.0643 0.029 -1.8518 -15.0643 0.2896
90.1986 -19.8363 65.5360 -19.8363 0.6383 55.9135 -10.6063 5.1791

-15.3011 -29.3047 -15.3011 -29.3047 0.2224 -15.3011 -29.3047 2.2238
72.7158 33.6756 65.5360 33.6756 1.4138 38.4306 42.9056 8.0925

Generation: 1

Initial population Initial population cost (1e3)

43.2047 -33.3457 1.9639
-34.8956 6.9403 1.9992

43.2156 -31.2374 2.0111
37.0539 -2.6692 2.5553

-51.2416 54.5154 2.6364
-52.2736 47.9308 2.7514
-36.1370 -5.8343 3.0675

55.9135 -10.6063 5.1791
-49.5863 -20.0747 7.3115

38.4306 42.9056 8.0925

A1.3 Example 3: Schwefel 1.2 Function

f ðxÞ ¼
Xn

i¼1

Xi

j¼1

xj

 !2

� 100� xi� 100; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0
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Population after
learner phase

Population after
checking
feasibility

Population
cost after
checking
feasibility
(1e3)

Population after
greedy selection

Population
cost after
greedy
selection
(1e3)

-10.0974 36.3206 -10.0974 36.3206 0.7896 -10.0974 36.3206 0.7896
-0.4343 -0.4773 -0.4343 -0.4773 0.001 -0.4343 -0.4773 0.001

35.3720 -26.0566 35.3720 -26.0566 1.338 35.3720 -26.0566 1.338
21.6050 3.8326 21.6050 3.8326 1.1138 21.6050 3.8326 1.1138

-6.3926 3.0782 -6.3926 3.0782 0.0519 -6.3926 3.0782 0.0519

-29.9437 37.8098 -29.9437 37.8098 0.9585 -17.9884 38.7008 0.7526
-40.3814 -1.2373 -40.3814 -1.2373 3.3628 -1.8518 -15.0643 0.2896
-7.9103 38.3470 -7.9103 38.3470 0.989 -7.9103 38.3470 0.989

-15.3737 -26.0349 -15.3737 -26.0349 1.951 -15.3737 -26.0349 1.951
16.6245 11.5246 16.6245 11.5246 1.0687 16.6245 11.5246 1.0687

Generation: 2

Initial population Initial population cost (1e3)

-0.4343 -0.4773 0.001
-6.3926 3.0782 0.0519
-1.8518 -15.0643 0.2896

-17.9884 38.7008 0.7526
-10.0974 36.3206 0.7896

-7.9103 38.3470 0.989
16.6245 11.5246 1.0687
21.6050 3.8326 1.1138
35.3720 -26.0566 1.338
43.2047 -33.3457 1.9639

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility
(1e3)

Population after
greedy selection

Population
cost after
greedy
selection
(1e3)

-9.7903 -1.1687 -9.7903 -1.1687 0.2159 -0.4343 -0.4773 0.001
-15.7486 2.3869 -15.7486 2.3869 0.4266 -6.3926 3.0782 0.0519

-11.2078 -15.7557 -11.2078 -15.7557 0.8526 -1.8518 -15.0643 0.2896
-27.3444 38.0094 -27.3444 38.0094 0.8615 -17.9884 38.7008 0.7526
-19.4534 35.6293 -19.4534 35.6293 0.6401 -19.4534 35.6293 0.6401

-17.2663 37.6556 -17.2663 37.6556 0.7138 -17.2663 37.6556 0.7138
7.2685 10.8333 7.2685 10.8333 0.3805 7.2685 10.8333 0.3805

12.2490 3.1412 12.2490 3.1412 0.3869 12.2490 3.1412 0.3869

26.0160 -26.7480 26.0160 -26.7480 0.6774 26.0160 -26.7480 0.6774
33.8487 -34.0370 33.8487 -34.0370 1.1458 33.8487 -34.0370 1.1458
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Population after
learner phase

Population after
checking
feasibility

Population
cost after
checking
feasibility
(1e3)

Population after
greedy selection

Population
cost after
greedy
selection
(1e3)

9.5768 -22.8203 9.5768 -22.8203 0.2671 -0.4343 -0.4773 1.0195
-35.6012 30.0177 -35.6012 30.0177 1.2986 -6.3926 3.0782 51.8508

-1.0620 -17.3390 -1.0620 -17.3390 0.3397 -1.8518 -15.0643 289.5843
-7.7023 7.1017 -7.7023 7.1017 0.0597 -7.7023 7.1017 59.6867
-9.4174 16.5765 -9.4174 16.5765 0.1399 -9.4174 16.5765 139.9408

-17.2619 37.6492 -17.2619 37.6492 0.7136 -17.2619 37.6492 713.6158
7.2354 10.8843 7.2354 10.8843 0.3807 7.2685 10.8333 380.5035

15.7304 -0.4265 15.7304 -0.4265 0.4817 12.2490 3.1412 386.8949

2.9303 -3.8191 2.9303 -3.8191 0.0094 2.9303 -3.8191 9.3767
30.8975 -31.2906 30.8975 -31.2906 0.9548 30.8975 -31.2906 954.8079

Generation: 3

Initial population Initial population cost

-0.4343 -0.4773 1.0195
-5.3763 -0.4773 1.0195

2.9303 -3.8191 9.3767
-6.3926 3.0782 51.8508
-7.7023 7.1017 59.6867
-9.4174 16.5765 139.9408
-1.8518 -15.0643 289.5843

7.2685 10.8333 380.5035
12.2490 3.1412 386.8949

-17.2619 37.6492 713.6158

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-0.4066 -6.3459 -0.4066 -6.3459 45.7621 -0.4343 -0.4773 1.0195

-5.3486 -6.3459 -5.3486 -6.3459 165.3693 -5.3763 -0.4773 1.0195
2.9580 -9.6877 2.9580 -9.6877 54.0386 2.9303 -3.8191 9.3767

-6.3650 -2.7904 -6.3650 -2.7904 124.334 -6.3926 3.0782 51.8508

-7.6747 1.2331 -7.6747 1.2331 100.3955 -7.7023 7.1017 59.6867
-9.3897 10.7079 -9.3897 10.7079 89.9049 -9.3897 10.7079 89.9049
-1.8242 -20.9329 -1.8242 -20.9329 521.2133 -1.8518 -15.0643 289.5843

7.2961 4.9646 7.2961 4.9646 203.5592 7.2961 4.9646 203.5592
12.2766 -2.7274 12.2766 -2.7274 241.9022 12.2766 -2.7274 241.9022

-17.2343 31.7806 -17.2343 31.7806 508.6154 -17.2343 31.7806 508.6154
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.7780 11.9969 0.7780 11.9969 163.8018 -0.4343 -0.4773 1.0195

-3.6096 -5.4008 -3.6096 -5.4008 94.2164 -5.3763 -0.4773 1.0195
7.5402 -9.2547 7.5402 -9.2547 59.7945 2.9303 -3.8191 9.3767

-6.2181 2.9491 -6.2181 2.9491 49.3509 -6.2181 2.9491 49.3509

-19.6893 8.8097 -19.6893 8.8097 506.0354 -7.7023 7.1017 59.6867
-1.9004 -9.4107 -1.9004 -9.4107 131.5524 -9.3897 10.7079 89.9049
-1.8057 -14.5892 -1.8057 -14.5892 272.0528 -1.8057 -14.5892 272.0528

23.9429 -13.2332 23.9429 -13.2332 687.961 7.2961 4.9646 203.5592
-5.0283 8.0034 -5.0283 8.0034 34.1352 -5.0283 8.0034 34.1352

-17.0308 31.4214 -17.0308 31.4214 497.1375 -17.0308 31.4214 497.1375

246 Appendix 1: Additional Demonstrative Examples Solved by TLBO Algorithm



www.manaraa.com

A1.4 Example 4: Schwefel 2.21 Function

f ðxÞ ¼ maxi xij j; 1� i� nf g
�100� xi� 100; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0

Generation: 1

Initial population Initial population cost

-27.8563 25.7134 27.8563
31.0886 3.0272 31.0886
7.6171 46.8397 46.8397

10.5190 60.8093 60.8093
77.8636 -15.7001 77.8636
41.0139 -79.8978 79.8978

-83.0201 -28.1705 83.0201
71.2215 93.6970 93.697
1.4503 -97.5835 97.5835

98.2282 -72.6985 98.2282

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-77.3135 45.9463 -77.3135 45.9463 77.3135 -27.8563 25.7134 27.8563
-18.3686 23.2601 -18.3686 23.2601 23.2601 -18.3686 23.2601 23.2601
-41.8401 67.0726 -41.8401 67.0726 67.0726 7.6171 46.8397 46.8397
-38.9382 81.0423 -38.9382 81.0423 81.0423 10.5190 60.8093 60.8093

28.4064 4.5328 28.4064 4.5328 28.4064 28.4064 4.5328 28.4064
-8.4434 -59.6648 -8.4434 -59.6648 59.6648 -8.4434 -59.6648 59.6648

-132.4773 -7.9376 -100.0000 -7.9376 100 -83.0201 -28.1705 83.0201
21.7643 113.9299 21.7643 100.0000 100 71.2215 93.6970 93.697

-48.0069 -77.3505 -48.0069 -77.3505 77.3505 -48.0069 -77.3505 77.3505
48.7709 -52.4656 48.7709 -52.4656 52.4656 48.7709 -52.4656 52.4656
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-3.3771 49.6246 -3.3771 49.6246 49.6246 -27.8563 25.7134 27.8563

-45.4060 -11.8840 -45.4060 -11.8840 45.406 -18.3686 23.2601 23.2601
26.0179 62.0679 26.0179 62.0679 62.0679 7.6171 46.8397 46.8397

-16.4441 25.7617 -16.4441 25.7617 25.7617 -16.4441 25.7617 25.7617

41.5531 -22.2211 41.5531 -22.2211 41.5531 28.4064 4.5328 28.4064
-14.4586 -33.2096 -14.4586 -33.2096 33.2096 -14.4586 -33.2096 33.2096
-64.2011 -9.7883 -64.2011 -9.7883 64.2011 -64.2011 -9.7883 64.2011

59.1589 84.8105 59.1589 84.8105 84.8105 59.1589 84.8105 84.8105
-16.9840 -120.9257 -16.9840 -100.0000 100 -48.0069 -77.3505 77.3505

27.9060 -2.1179 27.9060 -2.1179 27.906 27.9060 -2.1179 27.906

Generation: 2

Initial population Initial population cost

-18.3686 23.2601 23.2601
-16.4441 25.7617 25.7617
-27.8563 25.7134 27.8563

95.3769 25.7134 27.8563
27.9060 -2.1179 27.906
28.4064 4.5328 28.4064

-14.4586 -33.2096 33.2096
7.6171 46.8397 46.8397

-64.2011 -9.7883 64.2011
-48.0069 -77.3505 77.3505

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-23.6413 30.3752 -23.6413 30.3752 30.3752 -18.3686 23.2601 23.2601

-21.7167 32.8768 -21.7167 32.8768 32.8768 -16.4441 25.7617 25.7617
-33.1289 32.8285 -33.1289 32.8285 33.1289 -27.8563 25.7134 27.8563

90.1043 32.8285 90.1043 32.8285 90.1043 95.3769 25.7134 27.8563

22.6334 4.9971 22.6334 4.9971 22.6334 22.6334 4.9971 22.6334
23.1338 11.6479 23.1338 11.6479 23.1338 23.1338 11.6479 23.1338

-19.7312 -26.0945 -19.7312 -26.0945 26.0945 -19.7312 -26.0945 26.0945

2.3445 53.9548 2.3445 53.9548 53.9548 7.6171 46.8397 46.8397
-69.4738 -2.6732 -69.4738 -2.6732 69.4738 -64.2011 -9.7883 64.2011
-53.2795 -70.2355 -53.2795 -70.2355 70.2355 -53.2795 -70.2355 70.2355
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-18.3610 23.5371 -18.3610 23.5371 23.5371 -18.3686 23.2601 23.2601

-19.5752 23.0188 -19.5752 23.0188 23.0188 -19.5752 23.0188 23.0188
-21.8007 48.5674 -21.8007 48.5674 48.5674 -27.8563 25.7134 27.8563

34.1165 8.2674 34.1165 8.2674 34.1165 95.3769 25.7134 27.8563

31.4716 6.5020 31.4716 6.5020 31.4716 22.6334 4.9971 22.6334
53.3077 43.9818 53.3077 43.9818 53.3077 23.1338 11.6479 23.1338

-15.2776 -54.4926 -15.2776 -54.4926 54.4926 -19.7312 -26.0945 26.0945

66.6510 93.3872 66.6510 93.3872 93.3872 7.6171 46.8397 46.8397
-2.5209 3.9339 -2.5209 3.9339 3.9339 -2.5209 3.9339 3.9339

-28.7171 -23.0137 -28.7171 -23.0137 28.7171 -28.7171 -23.0137 28.7171

Generation: 3

Initial population Initial population cost

-2.5209 3.9339 3.9339
22.6334 4.9971 22.6334

-19.5752 23.0188 23.0188
23.1338 11.6479 23.1338

-18.3686 23.2601 23.2601
-80.5678 23.2601 23.2601
-19.7312 -26.0945 26.0945
-27.8563 25.7134 27.8563
-28.7171 -23.0137 28.7171

7.6171 46.8397 46.8397

Population after
teacher phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-1.1494 -1.4837 -1.1494 -1.4837 1.4837 -1.1494 -1.4837 1.4837
24.0049 -0.4204 24.0049 -0.4204 24.0049 22.6334 4.9971 22.6334

-18.2037 17.6012 -18.2037 17.6012 18.2037 -18.2037 17.6012 18.2037

24.5053 6.2303 24.5053 6.2303 24.5053 23.1338 11.6479 23.1338
-16.9971 17.8425 -16.9971 17.8425 17.8425 -16.9971 17.8425 17.8425
-79.1963 17.8425 -79.1963 17.8425 79.1963 -80.5678 23.2601 23.2601

-18.3597 -31.5121 -18.3597 -31.5121 31.5121 -19.7312 -26.0945 26.0945
-26.4847 20.2958 -26.4847 20.2958 26.4847 -26.4847 20.2958 26.4847
-27.3456 -28.4313 -27.3456 -28.4313 28.4313 -27.3456 -28.4313 28.4313

8.9886 41.4221 8.9886 41.4221 41.4221 8.9886 41.4221 41.4221
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

4.0686 -5.9694 4.0686 -5.9694 5.9694 -1.1494 -1.4837 1.4837

47.6169 21.7074 47.6169 21.7074 47.6169 22.6334 4.9971 22.6334
-49.4296 27.2388 -49.4296 27.2388 49.4296 -18.2037 17.6012 18.2037

48.3652 33.8640 48.3652 33.8640 48.3652 23.1338 11.6479 23.1338

-56.9539 24.0103 -56.9539 24.0103 56.9539 -16.9971 17.8425 17.8425
-41.8319 16.4052 -41.8319 16.4052 41.8319 -80.5678 23.2601 23.2601
-18.1198 -0.1991 -18.1198 -0.1991 18.1198 -18.1198 -0.1991 18.1198

-23.2746 19.4657 -23.2746 19.4657 23.2746 -23.2746 19.4657 23.2746
-26.6040 -27.8425 -26.6040 -27.8425 27.8425 -26.6040 -27.8425 27.8425

5.2191 32.5603 5.2191 32.5603 32.5603 5.2191 32.5603 32.5603
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Generation: 1

Initial population Initial population cost
1.0e + 005

-1.5086 -3.9379 0.0387
3.5159 -7.2050 0.3829
5.8352 8.2983 0.6633
5.8591 7.4743 0.7214
7.3052 -0.0448 2.8531

-7.9559 2.5339 3.6929
-8.3702 7.8102 3.8759
-8.4321 8.5955 3.9078

8.8144 -3.4011 6.5771
9.2051 -3.2960 7.75

A1.5 Example 5: Rosenbrock Function

f ðxÞ ¼
Xn�1

i¼1

100ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2
h i

�30� xi� 30; minðf Þ ¼ f ð1; 1. . .1Þ ¼ 0

Population after
teacher phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 005 1.0e + 005

-1.7359 -6.9808 -1.7359 -6.9808 0.1 -1.5086 -3.9379 0.0387
3.2886 -10.2479 3.2886 -10.0000 0.4333 3.5159 -7.2050 0.3829
5.6079 5.2555 5.6079 5.2555 0.6863 5.8352 8.2983 0.6633

5.6318 4.4315 5.6318 4.4315 0.7447 5.8591 7.4743 0.7214
7.0779 -3.0877 7.0779 -3.0877 2.829 7.0779 -3.0877 2.829

-8.1832 -0.5090 -8.1832 -0.5090 4.5536 -7.9559 2.5339 3.6929

-8.5975 4.7673 -8.5975 4.7673 4.7826 -8.3702 7.8102 3.8759
-8.6594 5.5526 -8.6594 5.5526 4.8219 -8.4321 8.5955 3.9078

8.5871 -6.4439 8.5871 -6.4439 6.4299 8.5871 -6.4439 6.4299

8.9778 -6.3389 8.9778 -6.3389 7.5592 8.9778 -6.3389 7.5592
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 005 1.0e + 005

-8.8153 -4.6615 -8.8153 -4.6615 6.7859 -1.5086 -3.9379 0.0387
7.4325 -12.1527 7.4325 -10.0000 4.2569 3.5159 -7.2050 0.3829
8.5209 8.2424 8.5209 8.2424 4.1432 5.8352 8.2983 0.6633

5.8551 7.6133 5.8551 7.6133 0.7114 5.8551 7.6133 0.7114
6.0748 5.6054 6.0748 5.6054 0.9798 6.0748 5.6054 0.9798

-7.9269 2.1642 -7.9269 2.1642 3.6818 -7.9269 2.1642 3.6818

-8.3510 7.5664 -8.3510 7.5664 3.8662 -8.3510 7.5664 3.8662
-7.6155 7.5155 -7.6155 7.5155 2.549 -7.6155 7.5155 2.549

6.1846 6.4265 6.1846 6.4265 1.013 6.1846 6.4265 1.013

7.5826 0.1596 7.5826 0.1596 3.2878 7.5826 0.1596 3.2878

Generation: 2

Initial population Initial population cost
1.0e + 005

-1.5086 -3.9379 0.0387
-4.7189 -3.9379 0.0387

3.5159 -7.2050 0.3829
5.8352 8.2983 0.6633
5.8551 7.6133 0.7114
6.0748 5.6054 0.9798
6.1846 6.4265 1.013

-7.6155 7.5155 2.549
7.5826 0.1596 3.2878

-7.9269 2.1642 3.6818

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 005 1.0e + 005

-3.0480 -7.9918 -3.0480 -7.9918 0.2988 -1.5086 -3.9379 0.0387
-6.2582 -7.9918 -6.2582 -7.9918 2.2243 -4.7189 -3.9379 0.0387

1.9766 -11.2589 1.9766 -10.0000 0.1934 1.9766 -10.0000 0.1934

4.2958 4.2445 4.2958 4.2445 0.202 4.2958 4.2445 0.202
4.3157 3.5595 4.3157 3.5595 0.2271 4.3157 3.5595 0.2271
4.5354 1.5516 4.5354 1.5516 0.3618 4.5354 1.5516 0.3618

4.6452 2.3726 4.6452 2.3726 0.369 4.6452 2.3726 0.369
-9.1548 3.4617 -9.1548 3.4617 6.4571 -7.6155 7.5155 2.549

6.0432 -3.8942 6.0432 -3.8942 1.6336 6.0432 -3.8942 1.6336

-9.4663 -1.8897 -9.4663 -1.8897 8.3733 -7.9269 2.1642 3.6818
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 006 1.0e + 005

-5.8724 -3.9632 -5.8724 -3.9632 0.1479 -1.5086 -3.9379 0.0387
-10.7218 -7.9834 -10.0000 -7.9834 1.1662 -4.7189 -3.9379 0.0387

1.4977 -12.9410 1.4977 -10.0000 0.015 1.4977 -10.0000 0.1499

10.4861 5.2982 10.0000 5.2982 0.8969 4.2958 4.2445 0.202
9.8074 1.7386 9.8074 1.7386 0.8921 4.3157 3.5595 0.2271

16.4707 0.9649 10.0000 0.9649 0.9809 4.5354 1.5516 0.3618

3.9016 -1.0751 3.9016 -1.0751 0.0266 3.9016 -1.0751 0.2657
3.8791 -2.0864 3.8791 -2.0864 0.0294 3.8791 -2.0864 0.2936
3.6033 -7.5576 3.6033 -7.5576 0.0422 3.6033 -7.5576 0.422

-7.6210 7.4203 -7.6210 7.4203 0.2567 -7.6210 7.4203 2.5672

Generation: 3

Initial population Initial population cost
1.0e + 004

-1.5086 -3.9379 0.3867
4.3759 -3.9379 0.3867
1.4977 -10.0000 1.499
4.2958 4.2445 2.0201
4.3157 3.5595 2.2709
3.9016 -1.0751 2.6569
3.8791 -2.0864 2.9364
4.5354 1.5516 3.6182
3.6033 -7.5576 4.22

-4.7189 -3.9379 6.8707

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 005 1.0e + 004

-3.7475 -3.7049 -3.7475 -3.7049 0.3152 -1.5086 -3.9379 0.3867
2.1370 -3.7049 2.1370 -3.7049 0.0684 4.3759 -3.9379 0.3867

-0.7412 -9.7669 -0.7412 -9.7669 0.1065 -0.7412 -9.7669 1.0646

2.0569 4.4776 2.0569 4.4776 0.0001 2.0569 4.4776 0.0007
2.0768 3.7926 2.0768 3.7926 0.0003 2.0768 3.7926 0.0028
1.6627 -0.8420 1.6627 -0.8420 0.013 1.6627 -0.8420 0.1301

1.6401 -1.8533 1.6401 -1.8533 0.0206 1.6401 -1.8533 0.2065
2.2965 1.7847 2.2965 1.7847 0.0122 2.2965 1.7847 0.1219
1.3643 -7.3246 1.3643 -7.3246 0.0844 1.3643 -7.3246 0.8438

-6.9578 -3.7049 -6.9578 -3.7049 2.7167 -4.7189 -3.9379 6.8707

Appendix 1: Additional Demonstrative Examples Solved by TLBO Algorithm 253



www.manaraa.com

Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 004 1.0e + 004

-1.1072 -3.9379 -1.1072 -3.9379 0.2671 -1.1072 -3.9379 0.2671
2.2244 -3.9379 2.2244 -3.9379 0.7898 4.3759 -3.9379 0.3867
0.0622 -8.8349 0.0622 -8.8349 0.7813 0.0622 -8.8349 0.7813

2.9022 8.7810 2.9022 8.7810 0.0016 2.0569 4.4776 0.0007
1.9784 4.6919 1.9784 4.6919 0.0061 2.0768 3.7926 0.0028
1.9911 2.8343 1.9911 2.8343 0.0129 1.9911 2.8343 0.0129

1.7769 0.8599 1.7769 0.8599 0.0528 1.7769 0.8599 0.0528
2.5341 3.1018 2.5341 3.1018 0.1105 2.5341 3.1018 0.1105
1.6604 -0.8920 1.6604 -0.8920 0.1332 1.6604 -0.8920 0.1332

-2.5688 -3.9379 -2.5688 -3.9379 1.1115 -2.5688 -3.9379 1.1115
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A1.6 Example 6: Step Function

f ðxÞ ¼
Xn

i¼1

xi þ 0:5½ �2

� 100� xi� 100; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0

Generation: 1

Initial population Initial population cost

13.8974 43.9576 2132
-42.5778 -17.9871 2173

-2.8289 -47.6670 2313
43.9244 -34.4907 3092
74.8079 -18.2191 5949
88.2787 42.6736 9593

-65.7761 -78.7583 10,597
69.8714 -79.3297 11,141
94.8875 -56.9660 12,274

-96.6432 -64.7305 13,634

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

12.3506 102.2130 12.3506 100.0000 10,144 13.8974 43.9576 2132

-44.1246 40.2683 -44.1246 40.2683 3536 -42.5778 -17.9871 2173
-4.3757 10.5883 -4.3757 10.5883 137 -4.3757 10.5883 137
42.3776 23.7647 42.3776 23.7647 2340 42.3776 23.7647 2340

73.2610 40.0363 73.2610 40.0363 6929 74.8079 -18.2191 5949
86.7319 100.9289 86.7319 100.0000 17,569 88.2787 42.6736 9593

-67.3229 -20.5029 -67.3229 -20.5029 4930 -67.3229 -20.5029 4930

68.3246 -21.0743 68.3246 -21.0743 5065 68.3246 -21.0743 5065
93.3407 1.2893 93.3407 1.2893 8650 93.3407 1.2893 8650

-98.1900 -6.4752 -98.1900 -6.4752 9640 -98.1900 -6.4752 9640
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

2.7204 23.5468 2.7204 23.5468 585 2.7204 23.5468 585

-35.3481 -17.2520 -35.3481 -17.2520 1514 -35.3481 -17.2520 1514
-66.5297 33.2003 -66.5297 33.2003 5578 -4.3757 10.5883 137

16.6746 68.1822 16.6746 68.1822 4913 42.3776 23.7647 2340

74.7944 -18.2797 74.7944 -18.2797 5949 74.8079 -18.2191 5949
157.4880 60.9155 100.0000 60.9155 13,721 88.2787 42.6736 9593

-46.8811 -4.2792 -46.8811 -4.2792 2225 -46.8811 -4.2792 2225
30.2676 24.3978 30.2676 24.3978 1476 30.2676 24.3978 1476

83.9911 -0.0367 83.9911 -0.0367 7056 83.9911 -0.0367 7056
24.2766 -1.5105 24.2766 -1.5105 580 24.2766 -1.5105 580

Generation: 2

Initial population Initial population cost

-4.3757 10.5883 137
24.2766 -1.5105 580
2.7204 23.5468 585

30.2676 24.3978 1476
-35.3481 -17.2520 1514

13.8974 43.9576 2132
-46.8811 -4.2792 2225

42.3776 23.7647 2340
74.8079 -18.2191 5949
83.9911 -0.0367 7056

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-7.5953 7.7191 -7.5953 7.7191 128 -7.5953 7.7191 128

21.0570 -4.3797 21.0570 -4.3797 457 21.0570 -4.3797 457
-0.4992 20.6776 -0.4992 20.6776 441 -0.4992 20.6776 441
27.0480 21.5285 27.0480 21.5285 1213 27.0480 21.5285 1213

-38.5677 -20.1213 -38.5677 -20.1213 1921 -35.3481 -17.2520 1514
10.6778 41.0884 10.6778 41.0884 1802 10.6778 41.0884 1802

-50.1007 -7.1484 -50.1007 -7.1484 2549 -46.8811 -4.2792 2225

39.1580 20.8955 39.1580 20.8955 1962 39.1580 20.8955 1962
71.5883 -21.0883 71.5883 -21.0883 5625 71.5883 -21.0883 5625
80.7715 -2.9059 80.7715 -2.9059 6570 80.7715 -2.9059 6570
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-20.8500 13.3161 -20.8500 13.3161 610 -7.5953 7.7191 128

17.4906 -19.8030 17.4906 -19.8030 689 21.0570 -4.3797 457
31.1394 55.1132 31.1394 55.1132 3986 -0.4992 20.6776 441
13.7922 21.1191 13.7922 21.1191 637 13.7922 21.1191 637

-9.1219 -11.2669 -9.1219 -11.2669 202 -9.1219 -11.2669 202
-34.7068 87.4164 -34.7068 87.4164 8794 10.6778 41.0884 1802
-14.7468 13.0113 -14.7468 13.0113 394 -14.7468 13.0113 394

18.4831 35.5543 18.4831 35.5543 1620 18.4831 35.5543 1620
14.7320 -0.4037 14.7320 -0.4037 225 14.7320 -0.4037 225
39.0889 9.1898 39.0889 9.1898 1602 39.0889 9.1898 1602

Generation: 3

Initial population Initial population cost

-7.5953 7.7191 128
-4.3757 10.5883 137
-9.1219 -11.2669 202
14.7320 -0.4037 225

-14.7468 13.0113 394
-0.4992 20.6776 441
21.0570 -4.3797 457
13.7922 21.1191 637
39.0889 9.1898 1602
18.4831 35.5543 1620

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-10.3836 6.4476 -10.3836 6.4476 136 -7.5953 7.7191 128

-7.1640 9.3168 -7.1640 9.3168 130 -7.1640 9.3168 130
-11.9103 -12.5384 -11.9103 -12.5384 313 -9.1219 -11.2669 202

11.9437 -1.6752 11.9437 -1.6752 148 11.9437 -1.6752 148

-17.5352 11.7399 -17.5352 11.7399 468 -14.7468 13.0113 394
-3.2875 19.4061 -3.2875 19.4061 370 -3.2875 19.4061 370
18.2687 -5.6512 18.2687 -5.6512 360 18.2687 -5.6512 360

11.0039 19.8476 11.0039 19.8476 521 11.0039 19.8476 521
36.3005 7.9183 36.3005 7.9183 1360 36.3005 7.9183 1360
15.6948 34.2828 15.6948 34.2828 1412 15.6948 34.2828 1412
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-26.6913 7.6325 -26.6913 7.6325 793 -7.5953 7.7191 128

-1.2993 6.4594 -1.2993 6.4594 37 -1.2993 6.4594 37
-9.0348 -10.1833 -9.0348 -10.1833 181 -9.0348 -10.1833 181
-2.7169 5.3736 -2.7169 5.3736 34 -2.7169 5.3736 34

1.4561 4.0956 1.4561 4.0956 17 1.4561 4.0956 17
-6.5490 10.5577 -6.5490 10.5577 170 -6.5490 10.5577 170
14.9469 -3.9340 14.9469 -3.9340 241 14.9469 -3.9340 241

16.0116 2.2711 16.0116 2.2711 260 16.0116 2.2711 260
15.3616 17.7926 15.3616 17.7926 549 15.3616 17.7926 549
3.8513 12.5447 3.8513 12.5447 185 3.8513 12.5447 185
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Generation: 1

Initial population Initial population cost

-0.0609 0.2479 0.0076
0.3663 -0.2011 0.0213
0.1746 0.5606 0.1984
0.9645 0.2074 0.8692
1.0304 -0.3204 1.1485

-0.7380 0.8122 1.1668
0.2091 -0.9694 1.7678

-1.1930 0.1806 2.028
1.2417 0.6089 2.6523
0.0332 1.1201 3.1482

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-0.2137 0.2500 -0.2137 0.2500 0.0099 -0.0609 0.2479 0.0076

0.2136 -0.1990 0.2136 -0.1990 0.0052 0.2136 -0.1990 0.0052
0.0218 0.5627 0.0218 0.5627 0.2005 0.1746 0.5606 0.1984
0.8117 0.2095 0.8117 0.2095 0.4381 0.8117 0.2095 0.4381

0.8777 -0.3183 0.8777 -0.3183 0.6139 0.8777 -0.3183 0.6139
-0.8908 0.8143 -0.8908 0.8143 1.509 -0.7380 0.8122 1.1668

0.0563 -0.9672 0.0563 -0.9672 1.7504 0.0563 -0.9672 1.7504

-1.3458 0.1827 -1.2800 0.1827 2.6866 -1.1930 0.1806 2.028
1.0889 0.6111 1.0889 0.6111 1.6849 1.0889 0.6111 1.6849

-0.1195 1.1222 -0.1195 1.1222 3.1724 0.0332 1.1201 3.1482

A1.7 Example 7: Quartic Function

f ðxÞ ¼
Xn

i¼1

ix4
i

� �

� 1:28� xi� 1:28; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-0.1742 1.4224 -0.1742 1.2800 5.3696 -0.0609 0.2479 0.0076

0.3405 -0.4057 0.3405 -0.4057 0.0676 0.2136 -0.1990 0.0052
0.2479 1.5074 0.2479 1.2800 5.3725 0.1746 0.5606 0.1984
0.7815 0.4520 0.7815 0.4520 0.4564 0.8117 0.2095 0.4381

0.2791 0.4299 0.2791 0.4299 0.0744 0.2791 0.4299 0.0744
-0.8614 1.0886 -0.8614 1.0886 3.3587 -0.7380 0.8122 1.1668

0.1420 0.1393 0.1420 0.1393 0.0012 0.1420 0.1393 0.0012

-0.7340 0.2672 -0.7340 0.2672 0.3005 -0.7340 0.2672 0.3005
1.7824 1.6710 1.2800 1.2800 8.0531 1.0889 0.6111 1.6849

-0.2692 0.9993 -0.2692 0.9993 1.9999 -0.2692 0.9993 1.9999

Generation: 2

Initial population Initial population cost

0.1420 0.1393 0.0012
0.2136 -0.1990 0.0052
-0.0609 0.2479 0.0076
-0.6771 0.2479 0.0076
0.2791 0.4299 0.0744
0.1746 0.5606 0.1984
-0.7340 0.2672 0.3005
0.8117 0.2095 0.4381
-0.7380 0.8122 1.1668
1.0889 0.6111 1.6849

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.1493 0.0635 0.1493 0.0635 0.0005 0.1493 0.0635 0.0005

0.2209 -0.2749 0.2209 -0.2749 0.0138 0.2136 -0.1990 0.0052
-0.0536 0.1720 -0.0536 0.1720 0.0018 -0.0536 0.1720 0.0018
-0.6697 0.1720 -0.6697 0.1720 0.2029 -0.6771 0.2479 0.0076

0.2864 0.3541 0.2864 0.3541 0.0382 0.2864 0.3541 0.0382
0.1819 0.4847 0.1819 0.4847 0.1115 0.1819 0.4847 0.1115

-0.7267 0.1913 -0.7267 0.1913 0.2815 -0.7267 0.1913 0.2815

0.8191 0.1337 0.8191 0.1337 0.4508 0.8117 0.2095 0.4381
-0.7306 0.7363 -0.7306 0.7363 0.8727 -0.7306 0.7363 0.8727

1.0963 0.5352 1.0963 0.5352 1.6086 1.0963 0.5352 1.6086
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-0.7053 -0.3622 -0.7053 -0.3622 0.2818 0.1493 0.0635 0.0005

0.0208 0.0688 0.0208 0.0688 0 0.0208 0.0688 0
-0.0472 0.1667 -0.0472 0.1667 0.0015 -0.0472 0.1667 0.0015
-0.3295 0.2056 -0.3295 0.2056 0.0154 -0.6771 0.2479 0.0076

0.2222 -0.1337 0.2222 -0.1337 0.0031 0.2222 -0.1337 0.0031
0.2004 0.0849 0.2004 0.0849 0.0017 0.2004 0.0849 0.0017

-0.2138 0.1165 -0.2138 0.1165 0.0025 -0.2138 0.1165 0.0025

0.6072 0.1644 0.6072 0.1644 0.1374 0.6072 0.1644 0.1374
-0.4936 0.5388 -0.4936 0.5388 0.2279 -0.4936 0.5388 0.2279

0.9253 0.4812 0.9253 0.4812 0.8404 0.9253 0.4812 0.8404

Generation: 3

Initial population Initial population cost

0.0208 0.0688 0
0.1493 0.0635 0.0005
0.1420 0.1393 0.0012

-0.0472 0.1667 0.0015
0.2004 0.0849 0.0017

-0.2138 0.1165 0.0025
0.2222 -0.1337 0.0031
0.6072 0.1644 0.1374

-0.6771 0.2479 0.2177
-0.4936 0.5388 0.2279

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.0212 0.0655 0.0212 0.0655 0 0.0212 0.0655 0

0.1498 0.0602 0.1498 0.0602 0.0005 0.1498 0.0602 0.0005
0.1424 0.1361 0.1424 0.1361 0.0011 0.1424 0.1361 0.0011

-0.0468 0.1634 -0.0468 0.1634 0.0014 -0.0468 0.1634 0.0014

0.2009 0.0817 0.2009 0.0817 0.0017 0.2009 0.0817 0.0017
-0.2134 0.1132 -0.2134 0.1132 0.0024 -0.2134 0.1132 0.0024

0.2226 -0.1370 0.2226 -0.1370 0.0032 0.2222 -0.1337 0.0031
0.6076 0.1612 0.6076 0.1612 0.1377 0.6072 0.1644 0.1374

-0.6766 0.2446 -0.6766 0.2446 0.2168 -0.6766 0.2446 0.2168
-0.4932 0.5355 -0.4932 0.5355 0.2236 -0.4932 0.5355 0.2236
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-0.0378 0.0680 -0.0378 0.0680 0 0.0212 0.0655 0

0.0445 0.0646 0.0445 0.0646 0 0.0445 0.0646 0
0.1445 0.1143 0.1445 0.1143 0.0008 0.1445 0.1143 0.0008
0.0400 0.1509 0.0400 0.1509 0.001 0.0400 0.1509 0.001

0.1523 0.0613 0.1523 0.0613 0.0006 0.1523 0.0613 0.0006
-0.1543 0.1012 -0.1543 0.1012 0.0008 -0.1543 0.1012 0.0008

0.1408 -0.0876 0.1408 -0.0876 0.0005 0.1408 -0.0876 0.0005

0.4808 0.1387 0.4808 0.1387 0.0542 0.4808 0.1387 0.0542
-0.1710 0.1795 -0.1710 0.1795 0.0029 -0.1710 0.1795 0.0029

0.0987 0.1485 0.0987 0.1485 0.0011 0.0987 0.1485 0.0011
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Generation: 1

Initial population Initial population cost

414.6404 -266.7841 -570.1683
402.8729 169.3761 -452.0135

-477.2336 414.1168 -343.9093
458.1882 -53.3658 -207.7937
236.6814 -89.3017 -77.4884

6.7347 60.6747 -64.048
-347.8892 -231.8518 38.9746

55.6974 -214.8973 134.76
-230.8016 139.7935 208.4045

329.3055 -383.1430 466.7711

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

633.0672 -268.3715 500.0000 -268.3715 13.0763 414.6404 -266.7841 -570.1683

621.2997 167.7886 500.0000 167.7886 117.2709 402.8729 169.3761 -452.0135
-258.8069 412.5294 -258.8069 412.5294 -505.9366 -258.8069 412.5294 -505.9366

676.6150 -54.9533 500.0000 -54.9533 230.2863 458.1882 -53.3658 -207.7937

455.1082 -90.8892 455.1082 -90.8892 -288.1424 455.1082 -90.8892 -288.1424
225.1614 59.0872 225.1614 59.0872 -203.7609 225.1614 59.0872 -203.7609

-129.4625 -233.4393 -129.4625 -233.4393 -22.9493 -129.4625 -233.4393 -22.9493

274.1242 -216.4847 274.1242 -216.4847 387.2395 55.6974 -214.8973 134.76
-12.3748 138.2060 -12.3748 138.2060 95.5799 -12.3748 138.2060 95.5799
547.7323 -384.7305 500.0000 -384.7305 447.0268 500.0000 -384.7305 447.0268

A1.8 Example 8: Schwefel 2.26 Function

f ðxÞ ¼ �
X30

i¼1

xi sin
ffiffiffiffiffiffi
xij j

p� �� �

� 500� xi� 500;

minðf Þ ¼ f ð420:9687; 420:9687. . .420:9687Þ ¼ �12; 569:5
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

386.4948 -389.1203 386.4948 -389.1203 19.1494 414.6404 -266.7841 -570.1683

384.2759 244.2618 384.2759 244.2618 -282.1897 402.8729 169.3761 -452.0135
-187.8422 340.9466 -187.8422 340.9466 298.6035 -258.8069 412.5294 -505.9366

870.1382 -221.0755 500.0000 -221.0755 345.1163 458.1882 -53.3658 -207.7937

453.1223 -115.0839 453.1223 -115.0839 -404.4391 453.1223 -115.0839 -404.4391
229.9795 62.0773 229.9795 62.0773 -180.8679 225.1614 59.0872 -203.7609
388.0430 158.1544 388.0430 158.1544 -292.8517 388.0430 158.1544 -292.8517

168.3098 -169.7026 168.3098 -169.7026 8.7987 168.3098 -169.7026 8.7987
-52.3783 345.7117 -52.3783 345.7117 130.3465 -12.3748 138.2060 95.5799

-107.5797 253.6387 -107.5797 253.6387 -32.4618 -107.5797 253.6387 -32.4618

Generation: 2

Initial population Initial population cost

414.6404 -266.7841 -570.1683
-157.8041 -266.7841 -570.1683
-258.8069 412.5294 -505.9366

402.8729 169.3761 -452.0135
453.1223 -115.0839 -404.4391
388.0430 158.1544 -292.8517
458.1882 -53.3658 -207.7937
225.1614 59.0872 -203.7609

-107.5797 253.6387 -32.4618
168.3098 -169.7026 8.7987

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

480.5672 -464.2750 480.5672 -464.2750 166.1976 414.6404 -266.7841 -570.1683

-91.8773 -464.2750 -91.8773 -464.2750 184.795 -157.8041 -266.7841 -570.1683
-192.8801 215.0385 -192.8801 215.0385 1.0701 -258.8069 412.5294 -505.9366

468.7997 -28.1148 468.7997 -28.1148 -179.421 402.8729 169.3761 -452.0135

519.0490 -312.5748 500.0000 -312.5748 -107.1863 453.1223 -115.0839 -404.4391
453.9698 -39.3365 453.9698 -39.3365 -287.5118 388.0430 158.1544 -292.8517
524.1150 -250.8567 500.0000 -250.8567 147.9468 458.1882 -53.3658 -207.7937

291.0882 -138.4037 291.0882 -138.4037 184.7692 225.1614 59.0872 -203.7609
-41.6530 56.1478 -41.6530 56.1478 -45.456 -41.6530 56.1478 -45.456
234.2366 -367.1935 234.2366 -367.1935 21.0725 168.3098 -169.7026 8.7987
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

470.6109 -363.0436 470.6109 -363.0436 -64.3866 414.6404 -266.7841 -570.1683

-484.5232 -347.9122 -484.5232 -347.9122 -78.1957 -157.8041 -266.7841 -570.1683
-291.0984 436.4608 -291.0984 436.4608 -673.141 -291.0984 436.4608 -673.141

559.7970 396.2217 500.0000 396.2217 -164.233 402.8729 169.3761 -452.0135

698.5646 -68.0152 500.0000 -68.0152 243.4152 453.1223 -115.0839 -404.4391
547.7561 255.2944 500.0000 255.2944 248.6771 388.0430 158.1544 -292.8517
457.4066 -62.8890 457.4066 -62.8890 -197.1044 458.1882 -53.3658 -207.7937

283.8279 95.4960 283.8279 95.4960 290.3188 225.1614 59.0872 -203.7609
364.2781 -84.3367 364.2781 -84.3367 -65.2052 364.2781 -84.3367 -65.2052
291.4291 -120.2912 291.4291 -120.2912 164.9353 168.3098 -169.7026 8.7987
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A1.9 Example 9: Rastrigin Function

f ðxÞ ¼
Xn

i¼1

x2
i � 10 cosð2pxiÞ þ 10

� �

�5:12� xi� 5:12; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0

Generation: 1

Initial population Initial population cost

3.9866 -0.8038 23.2555
2.0999 -4.0908 24.6331
1.5917 0.1550 25.3207
0.0743 -4.9963 26.0399
0.5386 3.1134 32.1257

-1.4262 1.3165 36.7718
0.3900 2.3982 41.6312

-4.2506 -1.4423 49.5382
5.0293 -3.7222 51.0571
3.6465 4.7973 59.4359

Population after
teacher phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

6.7378 -1.1040 5.1200 -1.1040 32.2039 3.9866 -0.8038 23.2555
4.8511 -4.3909 4.8511 -4.3909 64.6209 2.0999 -4.0908 24.6331
4.3429 -0.1452 4.3429 -0.1452 38.2752 1.5917 0.1550 25.3207
2.8255 -5.2964 2.8255 -5.1200 42.3418 0.0743 -4.9963 26.0399
3.2898 2.8133 3.2898 2.8133 37.339 0.5386 3.1134 32.1257
1.3250 1.0164 1.3250 1.0164 17.3798 1.3250 1.0164 17.3798
3.1412 2.0980 3.1412 2.0980 19.7912 3.1412 2.0980 19.7912

-1.4994 -1.7425 -1.4994 -1.7425 35.7561 -1.4994 -1.7425 35.7561
7.7805 -4.0223 5.1200 -4.0223 45.202 5.1200 -4.0223 45.202
6.3978 4.4971 5.1200 4.4971 69.1473 3.6465 4.7973 59.4359
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

3.6115 0.4839 3.6115 0.4839 50.8717 3.9866 -0.8038 23.2555

3.9958 -3.2433 3.9958 -3.2433 36.0653 2.0999 -4.0908 24.6331
1.9063 0.5495 1.9063 0.5495 25.1404 1.9063 0.5495 25.1404
1.9650 -4.1511 1.9650 -4.1511 25.5118 1.9650 -4.1511 25.5118

1.2046 1.2426 1.2046 1.2426 19.7133 1.2046 1.2426 19.7133
0.5002 1.5804 0.5002 1.5804 41.4995 1.3250 1.0164 17.3798
2.8528 3.0880 2.8528 3.0880 23.1449 3.1412 2.0980 19.7912

-0.9132 -1.3826 -0.9132 -1.3826 21.5989 -0.9132 -1.3826 21.5989
3.3667 1.4005 3.3667 1.4005 48.0998 5.1200 -4.0223 45.202
2.6048 2.4436 2.6048 2.4436 50.0468 2.6048 2.4436 50.0468

Generation: 2

Initial population Initial population cost

1.3250 1.0164 17.3798
1.2046 1.2426 19.7133
3.1412 2.0980 19.7912

-0.9132 -1.3826 21.5989
3.9866 -0.8038 23.2555
4.8833 -0.8038 23.2555
2.0999 -4.0908 24.6331
1.9063 0.5495 25.1404
1.9650 -4.1511 25.5118
5.1200 -4.0223 45.202

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-0.2184 2.2790 -0.2184 2.2790 25.084 1.3250 1.0164 17.3798

-0.3388 2.5053 -0.3388 2.5053 41.6801 1.2046 1.2426 19.7133
1.5978 3.3607 1.5978 3.3607 48.4254 3.1412 2.0980 19.7912

-2.4565 -0.1200 -2.4565 -0.1200 28.3868 -0.9132 -1.3826 21.5989

2.4432 0.4588 2.4432 0.4588 45.2183 3.9866 -0.8038 23.2555
3.3399 0.4588 3.3399 0.4588 46.3876 4.8833 -0.8038 23.2555
0.5565 -2.8281 0.5565 -2.8281 32.9716 2.0999 -4.0908 24.6331

0.3629 1.8121 0.3629 1.8121 26.1248 1.9063 0.5495 25.1404
0.4216 -2.8884 0.4216 -2.8884 29.6903 1.9650 -4.1511 25.5118
3.5766 -2.7596 3.5766 -2.7596 48.6656 5.1200 -4.0223 45.202
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.3206 1.0450 1.3206 1.0450 17.5269 1.3250 1.0164 17.3798

1.1133 1.3328 1.1133 1.3328 20.4122 1.2046 1.2426 19.7133
2.6699 3.5558 2.6699 3.5558 53.9872 3.1412 2.0980 19.7912

-5.0395 -1.8701 -5.0395 -1.8701 32.3523 -0.9132 -1.3826 21.5989

4.1924 -0.4632 4.1924 -0.4632 43.9825 3.9866 -0.8038 23.2555
4.7898 0.4671 4.7898 0.4671 50.4706 4.8833 -0.8038 23.2555
2.6707 -0.6984 2.6707 -0.6984 35.584 2.0999 -4.0908 24.6331

1.8581 4.4133 1.8581 4.4133 45.1996 1.9063 0.5495 25.1404
0.8525 -3.0810 0.8525 -3.0810 15.4835 0.8525 -3.0810 15.4835
3.8238 -2.1783 3.8238 -2.1783 30.542 3.8238 -2.1783 30.542

Generation: 3

Initial population Initial population cost

0.8525 -3.0810 15.4835
1.3250 1.0164 17.3798

-4.1251 1.0164 17.3798
1.2046 1.2426 19.7133
3.1412 2.0980 19.7912

-0.9132 -1.3826 21.5989
3.9866 -0.8038 23.2555
2.0999 -4.0908 24.6331
1.9063 0.5495 25.1404
3.8238 -2.1783 30.542

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.7973 -4.9201 0.7973 -4.9201 33.1468 0.8525 -3.0810 15.4835

1.2698 -0.8227 1.2698 -0.8227 19.1185 1.3250 1.0164 17.3798
-4.1802 -0.8227 -4.1802 -0.8227 29.4956 -4.1251 1.0164 17.3798

1.1494 -0.5965 1.1494 -0.5965 23.9859 1.2046 1.2426 19.7133

3.0860 0.2589 3.0860 0.2589 21.5785 3.1412 2.0980 19.7912
-0.9683 -3.2217 -0.9683 -3.2217 19.7466 -0.9683 -3.2217 19.7466

3.9314 -2.6429 3.9314 -2.6429 39.586 3.9866 -0.8038 23.2555

2.0447 -5.9299 2.0447 -5.1200 33.4982 2.0999 -4.0908 24.6331
1.8511 -1.2896 1.8511 -1.2896 21.6187 1.8511 -1.2896 21.6187
3.7686 -4.0174 3.7686 -4.0174 39.2356 3.8238 -2.1783 30.542
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.5956 -2.8731 0.5956 -2.8731 29.8749 0.8525 -3.0810 15.4835

1.0620 2.1691 1.0620 2.1691 11.7131 1.0620 2.1691 11.7131
0.0423 1.0164 0.0423 1.0164 1.4384 0.0423 1.0164 1.4384

-0.4330 2.4472 -0.4330 2.4472 44.7575 1.2046 1.2426 19.7133

1.2130 1.2463 1.2130 1.2463 20.4864 3.1412 2.0980 19.7912
-0.1076 -1.6310 -0.1076 -1.6310 21.6704 -0.9683 -3.2217 19.7466

3.4884 0.9065 3.4884 0.9065 34.6418 3.9866 -0.8038 23.2555

2.4522 -1.9968 2.4522 -1.9968 29.5556 2.0999 -4.0908 24.6331
1.8416 -1.2524 1.8416 -1.2524 19.6678 1.8416 -1.2524 19.6678
3.8451 -1.9979 3.8451 -1.9979 23.1493 3.8451 -1.9979 23.1493
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A1.10 Example 10: Ackley Function

f ðxÞ ¼
Xn

i¼1

�20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

30

X30

i¼1

x2
i

vuut
0
@

1
A� exp

1
30

X30

i¼1

cos 2pxi

 !

�32� xi� 32; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0

Generation: 1

Initial population Initial population cost

-6.2542 9.9629 17.3238
11.2311 12.2108 19.6048

-2.5180 15.4019 20.1133
14.9231 26.8464 20.3887

-13.8749 -25.8242 20.6188
0.2642 26.1139 20.8256

-22.8499 15.3343 21.2683
25.0947 -12.4015 21.3296

-5.6740 23.3924 21.5154
-23.9329 -26.5706 21.5864

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-9.5662 10.6640 -9.5662 10.6640 19.5917 -6.2542 9.9629 17.3238

7.9190 12.9118 7.9190 12.9118 18.0024 7.9190 12.9118 18.0024
-5.8300 16.1030 -5.8300 16.1030 19.0472 -5.8300 16.1030 19.0472
11.6110 27.5475 11.6110 27.5475 22.0039 14.9231 26.8464 20.3887

-17.1870 -25.1232 -17.1870 -25.1232 20.714 -13.8749 -25.8242 20.6188
-3.0478 26.8149 -3.0478 26.8149 20.3122 -3.0478 26.8149 20.3122

-26.1619 16.0354 -26.1619 16.0354 20.3395 -26.1619 16.0354 20.3395

21.7827 -11.7004 21.7827 -11.7004 21.1624 21.7827 -11.7004 21.1624
-8.9861 24.0934 -8.9861 24.0934 19.6963 -8.9861 24.0934 19.6963

-27.2449 -25.8695 -27.2449 -25.8695 21.1904 -27.2449 -25.8695 21.1904
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-21.7872 -2.4208 -21.7872 -2.4208 21.0938 -6.2542 9.9629 17.3238

16.6620 12.1105 16.6620 12.1105 20.5028 7.9190 12.9118 18.0024
-5.6426 17.0799 -5.6426 17.0799 20.0129 -5.8300 16.1030 19.0472
22.6249 40.9328 22.6249 30.0000 21.4625 14.9231 26.8464 20.3887

3.6604 5.3427 3.6604 5.3427 14.1334 3.6604 5.3427 14.1334
-8.1724 24.4663 -8.1724 24.4663 21.4222 -3.0478 26.8149 20.3122

-14.3131 21.5942 -14.3131 21.5942 21.6612 -26.1619 16.0354 20.3395

18.2850 -6.2751 18.2850 -6.2751 20.5901 18.2850 -6.2751 20.5901
1.4832 17.1687 1.4832 17.1687 20.1933 -8.9861 24.0934 19.6963

-20.8435 -14.9419 -20.8435 -14.9419 20.0818 -20.8435 -14.9419 20.0818

Generation: 2

Initial population Initial population cost

3.6604 5.3427 14.1334
-6.2542 9.9629 17.3238
22.0843 9.9629 17.3238
7.9190 12.9118 18.0024

-5.8300 16.1030 19.0472
-8.9861 24.0934 19.6963

-20.8435 -14.9419 20.0818
-3.0478 26.8149 20.3122

-26.1619 16.0354 20.3395
14.9231 26.8464 20.3887

Population after
teacher phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population cost
after greedy
selection

Population
after greedy
selection

9.5000 0.9839 9.5000 0.9839 16.5396 3.6604 5.3427 14.1334

-0.4147 5.6041 -0.4147 5.6041 13.2465 -0.4147 5.6041 13.2465
27.9239 5.6041 27.9239 5.6041 21.3138 22.0843 9.9629 17.3238
13.7586 8.5530 13.7586 8.5530 20.0547 7.9190 12.9118 18.0024

0.0095 11.7442 0.0095 11.7442 17.3014 0.0095 11.7442 17.3014
-3.1465 19.7346 -3.1465 19.7346 20.2438 -8.9861 24.0934 19.6963

-15.0039 -19.3007 -15.0039 -19.3007 20.6785 -20.8435 -14.9419 20.0818

2.7917 22.4561 2.7917 22.4561 21.1996 -3.0478 26.8149 20.3122
-20.3224 11.6766 -20.3224 11.6766 21.3487 -26.1619 16.0354 20.3395

20.7626 22.4876 20.7626 22.4876 21.8226 14.9231 26.8464 20.3887
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

8.5813 -1.9534 8.5813 -1.9534 15.9138 3.6604 5.3427 14.1334

4.1663 -4.2774 4.1663 -4.2774 12.9424 4.1663 -4.2774 12.9424
24.0841 9.7112 24.0841 9.7112 20.845 22.0843 9.9629 17.3238
13.5270 11.7444 13.5270 11.7444 20.5304 7.9190 12.9118 18.0024

0.5493 10.7978 0.5493 10.7978 17.6632 0.0095 11.7442 17.3014
-14.0628 21.7668 -14.0628 21.7668 20.5337 -8.9861 24.0934 19.6963
-31.6847 -40.3804 -30.0000 -30.0000 19.9504 -30.0000 -30.0000 19.9504

4.3116 17.4852 4.3116 17.4852 20.6483 -3.0478 26.8149 20.3122

-7.3898 24.7900 -7.3898 24.7900 21.4321 -26.1619 16.0354 20.3395
12.6976 26.2608 12.6976 26.2608 21.5728 14.9231 26.8464 20.3887

Generation: 3

Initial population Initial population cost

4.1663 -4.2774 12.9424
3.6604 5.3427 14.1334

-6.9711 5.3427 14.1334
0.0095 11.7442 17.3014
7.9190 12.9118 18.0024

22.0843 9.9629 19.5641
-8.9861 24.0934 19.6963

-30.0000 -30.0000 19.9504
-3.0478 26.8149 20.3122

-26.1619 16.0354 20.3395

Population after
teacher phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

11.7377 -9.5264 11.7377 -9.5264 19.7727 4.1663 -4.2774 12.9424

11.2318 0.0937 11.2318 0.0937 17.0292 3.6604 5.3427 14.1334
0.6003 0.0937 0.6003 0.0937 3.353 0.6003 0.0937 3.353
7.5809 6.4952 7.5809 6.4952 17.4522 0.0095 11.7442 17.3014

15.4905 7.6628 15.4905 7.6628 20.5142 7.9190 12.9118 18.0024
29.6557 4.7139 29.6557 4.7139 21.7561 22.0843 9.9629 19.5641

-1.4147 18.8444 -1.4147 18.8444 20.4762 -8.9861 24.0934 19.6963

-22.4286 -35.2490 -22.4286 -30.0000 21.5674 -30.0000 -30.0000 19.9504
4.5236 21.5659 4.5236 21.5659 21.4459 -3.0478 26.8149 20.3122

-18.5905 10.7864 -18.5905 10.7864 21.0262 -26.1619 16.0354 20.3395
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

0.7753 -19.8092 0.7753 -19.8092 20.2082 4.1663 -4.2774 12.9424

6.4353 1.2284 6.4353 1.2284 14.1238 6.4353 1.2284 14.1238
19.6206 -11.2363 19.6206 -11.2363 21.1751 0.6003 0.0937 3.353

-6.4373 10.7925 -6.4373 10.7925 18.6169 0.0095 11.7442 17.3014

15.4376 7.9388 15.4376 7.9388 19.9996 7.9190 12.9118 18.0024
37.6668 2.8761 30.0000 2.8761 20.0825 22.0843 9.9629 19.5641

-3.6246 21.6551 -3.6246 21.6551 21.292 -8.9861 24.0934 19.6963
-33.3490 -70.1699 -30.0000 -30.0000 19.9504 -30.0000 -30.0000 19.9504

4.1081 -4.0267 4.1081 -4.0267 11.4367 4.1081 -4.0267 11.4367
-16.6886 20.4534 -16.6886 20.4534 21.7267 -26.1619 16.0354 20.3395

Appendix 1: Additional Demonstrative Examples Solved by TLBO Algorithm 273



www.manaraa.com

Generation: 1

Initial population Initial population cost

-83.8021 -112.9558 5.8218
-76.0445 -202.4999 12.5024

91.0900 216.9729 13.9735
-47.3955 -255.7436 18.1008
177.8341 300.7528 31.7063

-74.5236 412.5378 45.51
-422.4655 94.9685 47.904
-159.2422 -444.7944 57.3225

13.4666 -596.6565 89.6718
593.9634 -379.8330 125.2432

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-92.5892 -109.1180 -92.5892 -109.1180 6.1034 -83.8021 -112.9558 5.8218

-84.8316 -198.6621 -84.8316 -198.6621 12.0413 -84.8316 -198.6621 12.0413
82.3029 220.8107 82.3029 220.8107 14.4052 91.0900 216.9729 13.9735

-56.1826 -251.9058 -56.1826 -251.9058 18.1991 -47.3955 -255.7436 18.1008

169.0470 304.5906 169.0470 304.5906 31.4851 169.0470 304.5906 31.4851
-83.3108 416.3756 -83.3108 416.3756 46.1143 -74.5236 412.5378 45.51

-431.2526 98.8063 -431.2526 98.8063 50.4151 -422.4655 94.9685 47.904
-168.0293 -440.9566 -168.0293 -440.9566 56.6367 -168.0293 -440.9566 56.6367

4.6794 -592.8187 4.6794 -592.8187 88.8569 4.6794 -592.8187 88.8569
585.1762 -375.9952 585.1762 -375.9952 122.2134 585.1762 -375.9952 122.2134

A1.11 Example 11: Griewank Function

f ðxÞ ¼ 1
4000

Xn

i¼1

x2
i �

Yn

i¼1

cos
xiffiffi

i
p
� �

þ 1

� 600� xi� 600; minðf Þ ¼ f ð0; 0. . .0Þ ¼ 0
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-106.6735 -23.2532 -106.6735 -23.2532 4.7148 -106.6735 -23.2532 4.7148
-104.6342 -168.4678 -104.6342 -168.4678 11.386 -104.6342 -168.4678 11.386

242.3155 252.8992 242.3155 252.8992 30.7799 91.0900 216.9729 13.9735
-21.2245 -900.4456 -21.2245 -600.0000 90.4004 -47.3955 -255.7436 18.1008
252.8723 762.2572 252.8723 600.0000 107.0118 169.0470 304.5906 31.4851

-77.2177 252.7957 -77.2177 252.7957 18.2332 -77.2177 252.7957 18.2332
-218.0158 281.5714 -218.0158 281.5714 32.5819 -218.0158 281.5714 32.5819

69.0966 161.1294 69.0966 161.1294 8.0157 69.0966 161.1294 8.0157
-20.8935 -268.2113 -20.8935 -268.2113 19.2761 -20.8935 -268.2113 19.2761
422.2508 -332.8732 422.2508 -332.8732 73.5558 422.2508 -332.8732 73.5558

Generation: 2

Initial population Initial population cost

-106.6735 -23.2532 4.7148
-83.8021 -112.9558 5.8218

69.0966 161.1294 8.0157
-104.6342 -168.4678 11.386

91.0900 216.9729 13.9735
-47.3955 -255.7436 18.1008
-77.2177 252.7957 18.2332
-20.8935 -268.2113 19.2761
169.0470 304.5906 31.4851

-218.0158 281.5714 32.5819

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

-142.6412 -85.6309 -142.6412 -85.6309 7.7262 -106.6735 -23.2532 4.7148

-119.7697 -175.3335 -119.7697 -175.3335 12.3764 -83.8021 -112.9558 5.8218
33.1289 98.7517 33.1289 98.7517 3.8195 33.1289 98.7517 3.8195

-140.6018 -230.8455 -140.6018 -230.8455 19.9766 -104.6342 -168.4678 11.386

55.1224 154.5952 55.1224 154.5952 7.85 55.1224 154.5952 7.85
-83.3631 -318.1213 -83.3631 -318.1213 28.0727 -47.3955 -255.7436 18.1008

-113.1854 190.4180 -113.1854 190.4180 14.1676 -113.1854 190.4180 14.1676
-56.8612 -330.5890 -56.8612 -330.5890 28.8612 -20.8935 -268.2113 19.2761

133.0793 242.2129 133.0793 242.2129 20.117 133.0793 242.2129 20.117
-253.9834 219.1937 -253.9834 219.1937 28.7024 -253.9834 219.1937 28.7024
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

-108.1442 81.4733 -108.1442 81.4733 5.4671 -106.6735 -23.2532 4.7148

-210.3619 -356.6942 -210.3619 -356.6942 44.4925 -83.8021 -112.9558 5.8218
79.0257 181.8495 79.0257 181.8495 9.9653 33.1289 98.7517 3.8195

-98.5351 -424.4390 -98.5351 -424.4390 48.5062 -104.6342 -168.4678 11.386

114.6219 485.5366 114.6219 485.5366 63.25 55.1224 154.5952 7.85
-72.8956 -216.8618 -72.8956 -216.8618 13.4203 -72.8956 -216.8618 13.4203
-72.4972 181.7579 -72.4972 181.7579 9.6404 -72.4972 181.7579 9.6404
-24.8979 -256.7760 -24.8979 -256.7760 16.8609 -24.8979 -256.7760 16.8609

-79.5062 -105.9209 -79.5062 -105.9209 5.8836 -79.5062 -105.9209 5.8836
-109.1569 -113.7565 -109.1569 -113.7565 7.4383 -109.1569 -113.7565 7.4383

Generation: 3

Initial population Initial population cost

33.1289 98.7517 3.8195
-106.6735 -23.2532 4.7148
-591.7034 -23.2532 4.7148

-83.8021 -112.9558 5.8218
-79.5062 -105.9209 5.8836

-109.1569 -113.7565 7.4383
55.1224 154.5952 7.85

-72.4972 181.7579 9.6404
-104.6342 -168.4678 11.386

-72.8956 -216.8618 13.4203

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

241.3195 235.8807 241.3195 235.8807 28.6684 33.1289 98.7517 3.8195

101.5171 113.8758 101.5171 113.8758 6.5975 -106.6735 -23.2532 4.7148
-383.5128 113.8758 -383.5128 113.8758 40.6236 -591.7034 -23.2532 4.7148

124.3886 24.1732 124.3886 24.1732 5.068 124.3886 24.1732 5.068

128.6844 31.2081 128.6844 31.2081 4.3936 128.6844 31.2081 4.3936
99.0337 23.3725 99.0337 23.3725 3.6386 99.0337 23.3725 3.6386

263.3130 291.7242 263.3130 291.7242 39.2041 55.1224 154.5952 7.85

135.6935 318.8869 135.6935 318.8869 31.6504 -72.4972 181.7579 9.6404
103.5565 -31.3388 103.5565 -31.3388 2.9473 103.5565 -31.3388 2.9473
135.2950 -79.7328 135.2950 -79.7328 8.1303 135.2950 -79.7328 8.1303
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

169.0586 217.3769 169.0586 217.3769 20.769 33.1289 98.7517 3.8195

-111.9678 -55.0120 -111.9678 -55.0120 4.7361 -106.6735 -23.2532 4.7148
-88.2729 14.8062 -88.2729 14.8062 3.4813 -88.2729 14.8062 3.4813
317.0003 -129.9907 317.0003 -129.9907 29.6889 124.3886 24.1732 5.068

111.4613 26.6567 111.4613 26.6567 4.3487 111.4613 26.6567 4.3487
207.2233 -76.5259 207.2233 -76.5259 13.9554 99.0337 23.3725 3.6386
113.9628 55.9009 113.9628 55.9009 5.1935 113.9628 55.9009 5.1935

-52.2304 156.2537 -52.2304 156.2537 7.4549 -52.2304 156.2537 7.4549
149.1970 -206.5484 149.1970 -206.5484 17.2314 103.5565 -31.3388 2.9473

-104.2316 -23.8232 -104.2316 -23.8232 3.502 -104.2316 -23.8232 3.502
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Generation: 1

Initial population Initial population cost

1.0e + 008

4.8414 -0.8334 0
18.7035 0.8076 0.0057
23.4069 6.5174 0.0323
23.2508 17.6024 0.0342
25.1938 14.0609 0.0536
32.5263 25.9016 0.3214

-8.4667 -41.3839 0.9701
31.8744 -48.5974 2.4483

-45.8290 -40.4443 2.507
-42.3172 49.4002 3.5006

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 008 1.0e + 008

3.9880 -0.4485 3.9880 -0.4485 0 3.9880 -0.4485 0
17.8501 1.1925 17.8501 1.1925 0.0038 17.8501 1.1925 0.0038

22.5536 6.9023 22.5536 6.9023 0.0248 22.5536 6.9023 0.0248
22.3975 17.9874 22.3975 17.9874 0.0277 22.3975 17.9874 0.0277
24.3404 14.4459 24.3404 14.4459 0.0427 24.3404 14.4459 0.0427

31.6729 26.2865 31.6729 26.2865 0.291 31.6729 26.2865 0.291
-9.3200 -40.9990 -9.3200 -40.9990 0.9234 -9.3200 -40.9990 0.9234
31.0210 -48.2125 31.0210 -48.2125 2.3274 31.0210 -48.2125 2.3274

-46.6823 -40.0594 -46.6823 -40.0594 2.6271 -45.8290 -40.4443 2.507

-43.1705 49.7851 -43.1705 49.7851 3.7161 -42.3172 49.4002 3.5006

A1.12 Example 12: Penalty1 Function

f ðxÞ ¼ p
30

10 sin2ðpy1Þ þ
Xn�1

i¼1

ðyi � 1Þ2 1þ 10 sin2ðpyiþ1Þ
	 


þ ðyn � 1Þ2
" #

þ
Xn

i¼1

uðxi; 10; 100; 4Þ

� 50� xi� 50; minðf Þ ¼ f ð1; 1. . .1Þ ¼ 0
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 008 1.0e + 008

-5.7953 -10.2458 -5.7953 -10.2458 0 3.9880 -0.4485 0
44.3796 42.3892 44.3796 42.3892 2.4976 17.8501 1.1925 0.0038
21.3308 14.8613 21.3308 14.8613 0.017 21.3308 14.8613 0.017

22.0845 18.5578 22.0845 18.5578 0.0267 22.0845 18.5578 0.0267
24.0015 13.0150 24.0015 13.0150 0.0385 24.0015 13.0150 0.0385
29.4033 24.2558 29.4033 24.2558 0.1831 29.4033 24.2558 0.1831

13.7206 -5.2201 13.7206 -5.2201 0.0002 13.7206 -5.2201 0.0002
43.5544 -49.4794 43.5544 -49.4794 3.6969 31.0210 -48.2125 2.3274

-5.3588 -13.9828 -5.3588 -13.9828 0.0003 -5.3588 -13.9828 0.0003

-8.4297 22.2486 -8.4297 22.2486 0.0225 -8.4297 22.2486 0.0225

Generation: 2

Initial population Initial population cost

1.0e + 007

3.9880 -0.4485 0
4.8414 -0.8334 0

13.7206 -5.2201 0.0019
-5.3588 -13.9828 0.0025
17.8501 1.1925 0.038
21.3308 14.8613 0.1704

-8.4297 22.2486 0.2251
22.0845 18.5578 0.2669
24.0015 13.0150 0.3852
29.4033 24.2558 1.8305

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 007 1.0e + 006

-15.7988 -13.9518 -15.7988 -13.9518 0.0138 3.9880 -0.4485 0

-14.9455 -14.3368 -14.9455 -14.3368 0.0095 4.8414 -0.8334 0
-6.0663 -18.7235 -6.0663 -18.7235 0.0579 13.7206 -5.2201 0.0192

-25.1457 -27.4861 -25.1457 -27.4861 1.4612 -5.3588 -13.9828 0.0252

-1.9367 -12.3108 -1.9367 -12.3108 0.0003 -1.9367 -12.3108 0.0029
1.5440 1.3580 1.5440 1.3580 0 1.5440 1.3580 0

-28.2165 8.7453 -28.2165 8.7453 1.1013 -8.4297 22.2486 2.2509

2.2977 5.0545 2.2977 5.0545 0 2.2977 5.0545 0
4.2147 -0.4883 4.2147 -0.4883 0 4.2147 -0.4883 0
9.6165 10.7524 9.6165 10.7524 0 9.6165 10.7524 0.0001
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 006 1.0e + 006

14.3822 -19.4469 14.3822 -19.4469 0.8336 3.9880 -0.4485 0
11.8705 -13.0591 11.8705 -13.0591 0.01 4.8414 -0.8334 0

6.0388 -1.4539 6.0388 -1.4539 0 6.0388 -1.4539 0

0.1561 -6.8732 0.1561 -6.8732 0 0.1561 -6.8732 0
-0.9110 -8.1042 -0.9110 -8.1042 0 -0.9110 -8.1042 0

2.5853 0.5883 2.5853 0.5883 0 2.5853 0.5883 0

-6.9070 21.2786 -6.9070 21.2786 1.6182 -6.9070 21.2786 1.6182
2.8041 7.5381 2.8041 7.5381 0 2.8041 7.5381 0
3.9283 -0.3307 3.9283 -0.3307 0 3.9283 -0.3307 0

7.7652 7.0683 7.7652 7.0683 0 7.7652 7.0683 0

Generation: 3

Initial population Initial population cost

1.0e + 006

-0.9110 -8.1042 5.0356
2.8041 7.5381 11.3368
2.5853 0.5883 14.4636
3.9880 -0.4485 14.4824

41.5507 -0.4485 14.4824
0.1561 -6.8732 14.5782
3.9283 -0.3307 15.4044
6.0388 -1.4539 18.1844
7.7652 7.0683 19.1733
4.8414 -0.8334 19.3882

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 007 1.0e + 006

-12.2771 -11.6788 -12.2771 -11.6788 0.0004 -0.9110 -8.1042 5.0356
-8.5620 3.9635 -8.5620 3.9635 0.0000 2.8041 7.5381 11.3368
-8.7808 -2.9863 -8.7808 -2.9863 0.0000 2.5853 0.5883 14.4636

-7.3781 -4.0231 -7.3781 -4.0231 0.0000 3.9880 -0.4485 14.4824
30.1846 -4.0231 30.1846 -4.0231 1.6599 41.5507 -0.4485 14.4824

-11.2100 -10.4479 -11.2100 -10.4479 0.0000 0.1561 -6.8732 14.5782

-7.4378 -3.9053 -7.4378 -3.9053 0.0000 3.9283 -0.3307 15.4044
-5.3273 -5.0286 -5.3273 -5.0286 0.0000 -5.3273 -5.0286 4.4565
-3.6009 3.4937 -3.6009 3.4937 0.0000 -3.6009 3.4937 16.0575

-6.5247 -4.4081 -6.5247 -4.4081 0.0000 4.8414 -0.8334 19.3882

280 Appendix 1: Additional Demonstrative Examples Solved by TLBO Algorithm



www.manaraa.com

Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 003 1.0e + 006

-3.9851 -5.9633 -3.9851 -5.9633 0.0155 -0.9110 -8.1042 5.0356
5.9199 9.5056 5.9199 9.5056 0.0644 2.8041 7.5381 11.3368
2.3448 0.7529 2.3448 0.7529 0.0158 2.5853 0.5883 14.4636

-0.0955 -6.8298 -0.0955 -6.8298 0.0109 -0.0955 -6.8298 10.8868
12.5503 -5.6772 12.5503 -5.6772 4.3104 41.5507 -0.4485 14.4824

-0.9086 -8.1014 -0.9086 -8.1014 0.0050 -0.9086 -8.1014 5.0361

9.2820 -3.0501 9.2820 -3.0501 0.1294 3.9283 -0.3307 15.4044
-5.8927 -4.6348 -5.8927 -4.6348 0.0121 -5.3273 -5.0286 4.4565
-3.3078 2.2301 -3.3078 2.2301 0.0180 -3.6009 3.4937 16.0575

4.5613 0.3172 4.5613 0.3172 0.0396 4.8414 -0.8334 19.3882
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Generation: 1

Initial population Initial population cost

1.0e + 008

0.8752 20.4562 0.0571
-22.1707 -1.4415 0.0869

26.3507 -3.0696 0.2078
13.1101 27.0698 0.2416
20.7721 -26.6315 0.2808
8.8088 32.3612 0.5607

33.8588 31.7896 1.2087
1.4301 41.5484 1.7843

-43.9512 -0.5404 2.3019
37.7645 -47.4794 4.4086

A1.13 Example 13: Penalty2 Function

f ðxÞ ¼ 0:1

sin2ðp3x1Þ

þ
Xn�1

i¼1

ðxi � 1Þ2 1þ sin2ð3pxiþ1Þ
	 


þ ðxn � 1Þ2ð1þ sin2ð2px30Þ

2
664

3
775

þ
Xn

i¼1

uðxi; 5; 100; 4Þ

� 50� xi� 50; minðf Þ ¼ f ð1; 1. . .1Þ ¼ 0

uðxi; a; k;mÞ ¼

kðxi � aÞm xi [ a;

0; �a� xi� a;

kð�xi � aÞm; xi\� a

8
>><

>>:

yi ¼ 1þ 1=4ðxi þ 1Þ

Population after
teacher phase

Population
after checking
feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

1.0e + 008 1.0e + 008

-2.7834 28.0601 -2.7834 28.0601 0.2828 0.8752 20.4562 0.0571
-25.8293 6.1624 -25.8293 6.1624 0.1882 -22.1707 -1.4415 0.0869

22.6921 4.5343 22.6921 4.5343 0.098 22.6921 4.5343 0.098

9.4515 34.6737 9.4515 34.6737 0.7757 13.1101 27.0698 0.2416
17.1135 -19.0276 17.1135 -19.0276 0.0603 17.1135 -19.0276 0.0603
5.1502 39.9651 5.1502 39.9651 1.4947 8.8088 32.3612 0.5607

30.2002 39.3936 30.2002 39.3936 1.8026 33.8588 31.7896 1.2087
-2.2284 49.1523 -2.2284 49.1523 3.8003 1.4301 41.5484 1.7843

-47.6097 7.0635 -47.6097 7.0635 3.2964 -43.9512 -0.5404 2.3019

34.1060 -39.8754 34.1060 -39.8754 2.1971 34.1060 -39.8754 2.1971
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Population
after learner
phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 008 1.0e + 008

-7.3903 15.9882 -7.3903 15.9882 0.0146 -7.3903 15.9882 0.0146

-8.0161 -2.0271 -8.0161 -2.0271 0.0001 -8.0161 -2.0271 0.0001
58.4801 7.2595 50.0000 7.2595 4.1007 22.6921 4.5343 0.098
24.7843 12.5982 24.7843 12.5982 0.1565 24.7843 12.5982 0.1565

18.2706 -26.1874 18.2706 -26.1874 0.2325 17.1135 -19.0276 0.0603
17.2958 15.3503 17.2958 15.3503 0.0343 17.2958 15.3503 0.0343
32.1251 31.1939 32.1251 31.1939 1.0121 32.1251 31.1939 1.0121
0.9638 23.8227 0.9638 23.8227 0.1255 0.9638 23.8227 0.1255

-4.2656 15.9489 -4.2656 15.9489 0.0144 -4.2656 15.9489 0.0144
23.4409 -13.2996 23.4409 -13.2996 0.1204 23.4409 -13.2996 0.1204

Generation: 2

Initial population Initial population cost

1.0e + 007 *

-8.0161 -2.0271 0.0008
-4.2656 15.9489 0.1437
-7.3903 15.9882 0.1461
17.2958 15.3503 0.3433

0.8752 20.4562 0.5707
17.1135 -19.0276 0.6025
22.6921 4.5343 0.9798
23.4409 -13.2996 1.2039

0.9638 23.8227 1.2553
24.7843 12.5982 1.5654

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 006 1.0e + 006

-10.6007 -3.1703 -10.6007 -3.1703 0.0984 -8.0161 -2.0271 0.0083

-6.8502 14.8057 -6.8502 14.8057 0.9258 -6.8502 14.8057 0.9258
-9.9749 14.8451 -9.9749 14.8451 1.0008 -9.9749 14.8451 1.0008
14.7113 14.2071 14.7113 14.2071 1.6081 14.7113 14.2071 1.6081

-1.7094 19.3130 -1.7094 19.3130 4.1969 -1.7094 19.3130 4.1969

14.5290 -20.1708 14.5290 -20.1708 6.1217 17.1135 -19.0276 6.0253
20.1076 3.3911 20.1076 3.3911 5.2094 20.1076 3.3911 5.2094
20.8564 -14.4428 20.8564 -14.4428 7.1166 20.8564 -14.4428 7.1166

-1.6208 22.6795 -1.6208 22.6795 9.7699 -1.6208 22.6795 9.7699
22.1998 11.4550 22.1998 11.4550 8.9254 22.1998 11.4550 8.9254
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 008 1.0e + 006

-10.2235 -1.0779 -10.2235 -1.0779 0.0007 -8.0161 -2.0271 0.0083
-6.9988 14.5819 -6.9988 14.5819 0.0084 -6.9988 14.5819 0.8446

-10.4290 14.5996 -10.4290 14.5996 0.0094 -10.4290 14.5996 0.9361

13.8006 14.5418 13.8006 14.5418 0.0143 13.8006 14.5418 1.4289
-4.1552 20.1169 -4.1552 20.1169 0.0522 -1.7094 19.3130 4.1969
22.2417 -30.4442 22.2417 -30.4442 0.5075 17.1135 -19.0276 6.0253

19.7500 11.9068 19.7500 11.9068 0.0496 19.7500 11.9068 4.961
34.2232 -36.5188 34.2232 -36.5188 1.7162 20.8564 -14.4428 7.1166
18.4052 4.9023 18.4052 4.9023 0.0323 18.4052 4.9023 3.2292

20.8353 6.1957 20.8353 6.1957 0.0629 20.8353 6.1957 6.2881

Generation: 3

Initial population Initial population cost

1.0e + 006

-8.0161 -2.0271 0.0083
-33.1205 -2.0271 0.0083

-6.9988 14.5819 0.8446
-10.4290 14.5996 0.9361

13.8006 14.5418 1.4289
18.4052 4.9023 3.2292

-1.7094 19.3130 4.1969
19.7500 11.9068 4.961
17.1135 -19.0276 6.0253
20.8353 6.1957 6.2881

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

1.0e + 008 1.0e + 006

-21.7822 -15.9326 -21.7822 -15.9326 0.0936 -8.0161 -2.0271 0.0083
-46.8865 -15.9326 -46.8865 -15.9326 3.0925 -33.1205 -2.0271 0.0083
-20.7649 0.6765 -20.7649 0.6765 0.0618 -6.9988 14.5819 0.8446

-24.1951 0.6941 -24.1951 0.6941 0.1358 -10.4290 14.5996 0.9361
0.0346 0.6364 0.0346 0.6364 0 0.0346 0.6364 0
4.6391 -9.0031 4.6391 -9.0031 0.0003 4.6391 -9.0031 0.0257

-15.4754 5.4075 -15.4754 5.4075 0.012 -15.4754 5.4075 1.2042
5.9840 -1.9987 5.9840 -1.9987 0 5.9840 -1.9987 0.0001
3.3475 -32.9331 3.3475 -32.9331 0.6088 17.1135 -19.0276 6.0253

7.0692 -7.7097 7.0692 -7.7097 0.0001 7.0692 -7.7097 0.0072
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 007 1.0e + 006

-18.7106 3.8681 -18.7106 3.8681 0.3534 -8.0161 -2.0271 0.0083
-29.3857 -2.0271 -29.3857 -2.0271 3.5362 -33.1205 -2.0271 0.0083

-1.5266 3.7317 -1.5266 3.7317 0 -1.5266 3.7317 0
0.3295 3.7196 0.3295 3.7196 0 0.3295 3.7196 0

10.6663 -2.6342 10.6663 -2.6342 0.0103 0.0346 0.6364 0

5.2837 -5.6458 5.2837 -5.6458 0 5.2837 -5.6458 0
-16.7934 6.3957 -16.7934 6.3957 0.1935 -15.4754 5.4075 1.2042

15.4114 -14.0387 15.4114 -14.0387 0.1842 5.9840 -1.9987 0.0001
7.5548 -5.7040 7.5548 -5.7040 0.0004 7.5548 -5.7040 0.0043

11.5215 -14.7647 11.5215 -14.7647 0.109 7.0692 -7.7097 0.0072
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A1.14 Example 14: Unconstrained Himmelblau Function

Minimize

f ðXÞ ¼ ðx2
1 þ x2 � 11Þ2 þ ðx1 þ x2

2 � 7Þ2

Min (f) = f (3,2) = 0

Generation: 1

Initial population Initial population cost (1e3*)

3.7569 1.4016 0.022
1.9407 2.1356 0.0262
2.5188 0.2674 0.0387
1.7994 1.4796 0.0485
0.3837 2.4598 0.0708
2.2672 3.6877 0.0833
2.9300 3.9305 0.1318
0.1654 0.7948 0.1421
1.2639 4.3798 0.206
4.4856 5.7037 1.1209

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

3.4887 1.2798 3.4887 1.2798 9.5166 3.4887 1.2798 9.5166

1.6725 2.0137 1.6725 2.0137 39.924 1.9407 2.1356 26.2395
2.2505 0.1456 2.2505 0.1456 55.8745 2.5188 0.2674 38.7036
1.5311 1.3577 1.5311 1.3577 66.4021 1.7994 1.4796 48.5411

0.1154 2.3379 0.1154 2.3379 76.8138 0.3837 2.4598 70.7635
1.9990 3.5658 1.9990 3.5658 71.3303 1.9990 3.5658 71.3303
2.6618 3.8087 2.6618 3.8087 103.3982 2.6618 3.8087 103.3982

-0.1029 0.6729 0 0.6729 149.5145 0.1654 0.7948 142.0667

0.9957 4.2579 0.9957 4.2579 180.1031 0.9957 4.2579 180.1031
4.2174 5.5819 4.2174 5.5819 958.1119 4.2174 5.5819 958.1119
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Population after
learner phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

3.5405 1.2736 3.5405 1.2736 11.2667 3.4887 1.2798 9.5166

1.4675 1.0377 1.4675 1.0377 80.8305 1.9407 2.1356 26.2395
3.0446 -1.1102 3.0446 0 18.6401 3.0446 0 18.6401
2.9958 1.9810 2.9958 1.9810 0.0083 2.9958 1.9810 0.0083

-0.1390 0.9240 0 0.9240 139.3015 0.3837 2.4598 70.7635
2.0424 3.5359 2.0424 3.5359 67.7702 2.0424 3.5359 67.7702
2.3536 2.9763 2.3536 2.9763 23.9146 2.3536 2.9763 23.9146
0.3226 1.9939 0.3226 1.9939 86.5442 0.3226 1.9939 86.5442

3.2022 1.6221 3.2022 1.6221 2.1286 3.2022 1.6221 2.1286
4.1818 5.5413 4.1818 5.5413 922.4125 4.1818 5.5413 922.4125

Generation: 2

Initial population Initial population cost

2.9958 1.9810 0.0083
3.2022 1.6221 2.1286
3.4887 1.2798 9.5166
3.0446 0 18.6401
3.7569 1.4016 22.0302
2.3536 2.9763 23.9146
1.9407 2.1356 26.2395
2.0424 3.5359 67.7702
0.3837 2.4598 70.7635
0.3226 1.9939 86.5442

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

3.6045 2.0117 3.6045 2.0117 16.4594 2.9958 1.9810 0.0083
3.8109 1.6527 3.8109 1.6527 26.9961 3.2022 1.6221 2.1286
4.0974 1.3104 4.0974 1.3104 51.8049 3.4887 1.2798 9.5166

3.6533 0.0306 3.6533 0.0306 16.8452 3.6533 0.0306 16.8452
4.3656 1.4322 4.3656 1.4322 90.4207 3.7569 1.4016 22.0302
2.9623 3.0070 2.9623 3.0070 25.6535 2.3536 2.9763 23.9146

2.5494 2.1662 2.5494 2.1662 5.5075 2.5494 2.1662 5.5075
2.6511 3.5665 2.6511 3.5665 70.2417 2.0424 3.5359 67.7702
0.9924 2.4904 0.9924 2.4904 56.6607 0.9924 2.4904 56.6607

0.9313 2.0246 0.9313 2.0246 69.6218 0.9313 2.0246 69.6218
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
zgreedy selection

Population
cost after
greedy
selection

3.0384 1.9151 3.0384 1.9151 0.1079 2.9958 1.9810 0.0083

3.0139 1.9496 3.0139 1.9496 0.0354 3.0139 1.9496 0.0354
4.1386 0.2660 4.1386 0.2660 48.6737 3.4887 1.2798 9.5166
4.7411 -2.3364 4.7411 0 136.8488 3.6533 0.0306 16.8452

4.4876 0.5817 4.4876 0.5817 99.2097 3.7569 1.4016 22.0302
2.7838 2.3097 2.7838 2.3097 2.1362 2.7838 2.3097 2.1362
1.8935 2.5815 1.8935 2.5815 25.7848 2.5494 2.1662 5.5075
2.0425 3.5356 2.0425 3.5356 67.7364 2.0425 3.5356 67.7364

1.7954 2.3232 1.7954 2.3232 29.7753 1.7954 2.3232 29.7753
3.4538 1.2899 3.4538 1.2899 8.4656 3.4538 1.2899 8.4656

Generation: 3

Initial population Initial population cost

2.9958 1.9810 0.0083
2.6911 1.9810 0.0083
3.0139 1.9496 0.0354
2.7838 2.3097 2.1362
2.5494 2.1662 5.5075
3.4538 1.2899 8.4656
3.4887 1.2798 9.5166
3.6533 0.0306 16.8452
3.7569 1.4016 22.0302
1.7954 2.3232 29.7753

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

2.9824 2.0207 2.9824 2.0207 0.0115 2.9958 1.9810 0.0083
2.6776 2.0207 2.6776 2.0207 3.3319 2.6911 1.9810 0.0083
3.0005 1.9892 3.0005 1.9892 0.0019 3.0005 1.9892 0.0019
2.7703 2.3493 2.7703 2.3493 2.6155 2.7838 2.3097 2.1362
2.5360 2.2058 2.5360 2.2058 5.7457 2.5494 2.1662 5.5075
3.4404 1.3296 3.4404 1.3296 7.9007 3.4404 1.3296 7.9007
3.4753 1.3194 3.4753 1.3194 8.927 3.4753 1.3194 8.927
3.6398 0.0702 3.6398 0.0702 16.6337 3.6398 0.0702 16.6337
3.7435 1.4412 3.7435 1.4412 21.2363 3.7435 1.4412 21.2363
1.7820 2.3628 1.7820 2.3628 29.9643 1.7954 2.3232 29.7753
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

2.9976 1.9842 2.9976 1.9842 0.0052 2.9976 1.9842 0.0052
2.7338 1.9253 2.7338 1.9253 2.8771 2.6911 1.9810 0.0083
2.8501 2.1001 2.8501 2.1001 0.6713 3.0005 1.9892 0.0019
2.8136 2.2655 2.8136 2.2655 1.5646 2.8136 2.2655 1.5646
1.8716 2.5777 1.8716 2.5777 26.4996 2.5494 2.1662 5.5075
3.3809 1.4187 3.3809 1.4187 5.9991 3.3809 1.4187 5.9991
3.2994 1.4678 3.2994 1.4678 4.2234 3.2994 1.4678 4.2234
3.5007 1.1263 3.5007 1.1263 10.646 3.5007 1.1263 10.646
2.5994 2.1358 2.5994 2.1358 4.4661 2.5994 2.1358 4.4661
2.8554 1.6829 2.8554 1.6829 3.0768 2.8554 1.6829 3.0768
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Generation: 1

Initial population Initial population cost (1e5) Contraints

g1 g2

2.1196 2.3256 0.0112 0.5263 -0.3169
0.7140 4.2950 0.0241 1.1771 -1.1082
0.5930 3.6448 0.1120 3.2346 -3.1778
1.0476 2.1611 0.1422 3.7299 -3.6277
1.4024 5.2129 0.2039 -4.3488 4.4866
3.4453 2.0708 0.4824 -6.8723 7.2143
3.9228 1.2542 1.3817 -11.7106 12.1004
4.4953 1.7961 2.3877 -15.4162 15.8632
4.4893 4.9126 4.2963 -20.6880 21.1345
5.3575 5.0954 9.0602 -30.0657 30.5989

Population After
Teacher Phase

Population
After
Checking
Feasibility

Population
Cost After
Checking
Feasibility
(1e5)

Population
After greedy
selection

Population
Cost After
greedy
selection
(1e5)

Contraints

g1 g2

1.1208 -1.6613 1.1208 0 0.0767 2.1196 2.3256 0.0112 0.5263 -0.3169
-0.2848 0.3081 0 0.3081 0.0116 0 0.3081 0.0116 0.0331 -0.0356

-0.4058 -0.3422 0 0 0.0317 0 0 0.0317 1.4125 1.4100
0.0489 -1.8259 0.0489 0 0.0316 0.0489 0 0.0316 -1.4100 1.4124
0.4037 1.2259 0.4037 1.2259 0.1044 0.4037 1.2259 0.1044 3.0916 -3.0537

2.4466 -1.9162 2.4466 0 0.5222 3.4453 2.0708 0.4824 -6.8723 7.2143
2.9240 -2.7328 2.9240 0 0.9453 2.9240 0 0.9453 -9.6699 9.9598
3.4965 -2.1909 3.4965 0 1.7760 3.4965 0 1.7760 -13.2884 13.6355
3.4905 0.9256 3.4905 0.9256 0.9080 3.4905 0.9256 0.9080 -9.4758 9.8223

4.3587 1.1084 4.3587 1.1084 2.4636 4.3587 1.1084 2.4636 15.6614 16.0948

A1.15 Example 15: Constrained Himmelblau Function

Minimize

f ðXÞ ¼ ðx2
1 þ x2 � 11Þ2 þ ðx1 þ x2

2 � 7Þ2

Subjected to:

g1ðXÞ ¼ 4:84� ðx1 � 0:05Þ2 � ðx2 � 2:5Þ2

g2ðXÞ ¼ x2
1 þ ðx2 � 2:5Þ2 � 4:84
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Population after
learner phase

Population
after checking
feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

Contraints

g1 g2

3.0395 3.3588 3.0395 3.3588 0.2443 2.1196 2.3256 0.0112 0.5263 -0.3169

-2.2672 0.5469 0 0.5469 0.0221 0 0.3081 0.0116 0.0331 -0.0356
-0.1656 -0.5031 0 0 0.0317 0 0 0.0317 -1.4125 1.4100

0.0853 0 0.0853 0 0.0316 0.0489 0 0.0316 -1.4100 1.4124

1.6862 2.0478 1.6862 2.0478 0.0425 1.6862 2.0478 0.0425 1.9584 -1.7922
3.1658 1.9931 3.1658 1.9931 0.2727 3.1658 1.9931 0.2727 -5.1252 5.4392
2.7571 0 2.7571 0 0.7739 2.7571 0 0.7739 -8.7384 9.0116
3.4811 0.6229 3.4811 0.6229 1.1035 3.4811 0.6229 1.1035 -10.4560 10.8016

3.2066 1.2155 3.2066 1.2155 0.4689 3.2066 1.2155 0.4689 -6.7741 7.0922
3.8129 1.6835 3.8129 1.6835 1.0075 3.8129 1.6835 1.0075 -9.9861 10.3649

Generation: 2

Initial population Initial population cost (1e5)

2.1196 2.3256 0.0112
3.4353 2.3256 0.0112
0 0.3081 0.0116
0.0489 0 0.0316
0 0 0.0317
1.6862 2.0478 0.0425
3.1658 1.9931 0.2727
3.2066 1.2155 0.4689
2.7571 0 0.7739
3.8129 1.6835 1.0075

Population after
teacher phase

Population
after checking
feasibility

Population
cost after
checking
feasibility
(1e4)

Population after
greedy selection

Population
cost after
greedy
selection
(1e4)

1.5631 2.3201 1.5631 2.3201 0.6629 2.1196 2.3256 0.1118
2.8788 2.3201 2.8788 2.3201 1.1208 3.4353 2.3256 0.1118

-0.5565 0.3026 0 0.3026 0.1162 0 0.3026 0.1162
-0.5076 -0.0055 0 0 0.3165 0.0489 0 0.3157
-0.5565 -0.0055 0 0 0.3165 0 0 0.3165

1.1297 2.0424 1.1297 2.0424 1.2314 1.6862 2.0478 0.4251
2.6093 1.9876 2.6093 1.9876 0.4896 2.6093 1.9876 0.4896
2.6501 1.2100 2.6501 1.2100 1.3865 2.6501 1.2100 1.3865
2.2006 -0.0055 2.2006 0 3.7484 2.2006 0 3.7484

3.2564 1.6780 3.2564 1.6780 3.8419 3.2564 1.6780 3.8419
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Population after
learner phase

Population after
checking feasibility

Population
cost after
checking
feasibility
(1e4)

Population
after greedy
selection

Population
cost after
greedy
selection
(1e4)

2.1104 2.5902 2.1104 2.5902 0.1162 2.1196 2.3256 0.1118
2.1348 2.3256 2.1348 2.3256 0.1081 2.1348 2.3256 0.1081

-2.0526 0.5848 0 0.5848 0.2526 0 0.3026 0.1162
-0.0737 0 0 0 0.3165 0.0489 0 0.3157
-0.0231 -0.0281 0 0 0.3165 0 0 0.3165

0.7766 0.9432 0.7766 0.9432 0.4405 1.6862 2.0478 0.4251
3.0526 2.1690 3.0526 2.1690 1.9364 2.6093 1.9876 0.4896
2.5473 1.2994 2.5473 1.2994 0.9071 2.5473 1.2994 0.9071
1.8217 -0.6023 1.8217 0 2.1778 1.8217 0 2.1778

2.2895 2.2288 2.2895 2.2288 0.1075 2.2895 2.2288 0.1075

Generation: 3

Initial population Initial population cost

1.0e + 003

2.2895 2.2288 1.0746
2.1348 2.3256 1.0809
2.1196 2.3256 1.1183
3.4049 2.3256 1.1183
0 0.3026 1.1623
0.0489 0 3.1574
0 0 3.1652
1.6862 2.0478 4.2514
2.6093 1.9876 4.8957
2.5473 1.2994 9.0705

Population after
teacher phase

Population after
checking feasibility

Population
cost after
checking
feasibility

Population after
greedy selection

Population
cost after
greedy
selection

1.0e + 005 1.0e + 003

2.8845 2.8934 2.8845 2.8934 0.1224 2.2895 2.2288 1.0746
2.7298 2.9902 2.7298 2.9902 0.0769 2.1348 2.3256 1.0809
2.7146 2.9902 2.7146 2.9902 0.0727 2.1196 2.3256 1.1183
3.9999 2.9902 3.9999 2.9902 1.2214 3.4049 2.3256 1.1183
0.5950 0.9672 0.5950 0.9672 0.0569 0 0.3026 1.1623
0.6439 0.6646 0.6439 0.6646 0.0225 0.6439 0.6646 2.25
0.5950 0.6646 0.5950 0.6646 0.0238 0.5950 0.6646 2.3834
2.2811 2.7124 2.2811 2.7124 0.0105 2.2811 2.7124 1.05
3.2043 2.6522 3.2043 2.6522 0.2736 2.6093 1.9876 4.8957
3.1423 1.9640 3.1423 1.9640 0.2609 2.5473 1.2994 9.0705
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Population after
learner phase

Population after
checking
feasibility

Population
cost after
checking
feasibility

Population
after greedy
selection

Population
cost after
greedy
selection

Contraints

g1 g2

1.0e + 004 1.0e + 003

2.2842 2.5355 2.2842 2.5355 0.1037 2.2842 2.5355 1.0369 -0.1529 0.3788
3.3939 3.5188 3.3939 3.5188 5.5549 2.1348 2.3256 1.0809 0.4632 -0.2522

2.2221 2.5710 2.2221 2.5710 0.0016 2.2221 2.5710 0.0155 0.1169 0.1028
3.6784 2.6528 3.6784 2.6528 7.0736 3.4049 2.3256 1.1183 -6.4458 6.7838

-1.2465 -0.5024 0 0 0.3165 0 0.3026 1.1623 0.0089 -0.0114

0.9779 1.0367 0.9779 1.0367 0.4142 0.6439 0.6646 2.25 1.1186 -1.0567
1.6999 1.3177 1.6999 1.3177 0.1364 1.6999 1.3177 1.3642 0.7200 -0.5525
2.2774 2.9260 2.2774 2.9260 0.1115 2.2811 2.7124 1.05 -0.1829 0.4085
1.3415 1.1549 1.3415 1.1549 0.2599 1.3415 1.1549 2.599 1.3627 -1.2311

2.0939 1.1220 2.0939 1.1220 0.2572 2.0939 1.1220 2.5722 -1.2364 1.4433

BEST solutions obtained by using the TLBO algorithm for different number of population
sizes and generations

Example A B C D E F

1 0.000007 0 0 0 0 0
2 0.010012 0.000015 0.000001 0 0 0
3 0.000217 0 0 0 0 0
4 0.011658 0.001001 0.00003 0 0 0
5 0.031595 0 0.000005 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 -769.158 -837.964 -837.966 -837.965 -837.966 -837.966
9 0.00367 0.000016 0.000005 0 0 0
10 0.090041 0.000772 0 0 0 0
11 0.020971 0.014999 0.007453 0.005157 0.000001 0
12 0.012046 0.000002 0 0 0 0
13 0.000454 0.000034 0 0 0 0
14 0.001171 0.000002 0 0 0 0
15 14.16304 13.60063 13.59097 13.59087 13.59087 13.59084

A = Population 10; Generations 10

B = Population 10; Generations 20

C = Population 10; Generations 30

D = Population 10; Generations 40

E = Population 10; Generations 50

F = Population 10; Generations 100
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Appendix 2
Sample Codes

The codes for TLBO, ABC, BBO and PSO algorithms are given below. Readers
are to note that a blank Microsoft access file ‘‘Matrices.mat’’ is to be created for
output storage while running these codes. Even though elitism is mentioned in the
TLBO code (i.e. the word ‘keep’ in thecode), it is not actually implemented in the
results presented in this book.However, interested readers may make use of elitism
concept in TLBO code.

R. V. Rao and V. J. Savsani, Mechanical Design Optimization Using Advanced
Optimization Techniques, Springer Series in Advanced Manufacturing,
DOI: 10.1007/978-1-4471-2748-2, � Springer-Verlag London 2012
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204, 218
Speed reducer, 90, 106, 107, 113, 117, 128,

129, 153, 159, 160
Step-cone pulley, 97
Step function, 112, 127
Stiffened cylindrical shell, 91, 92, 120

T
Thermoelectric cooler, 195, 197, 199, 201,

203, 228, 233

U
Unconstrained benchmark functions, 3, 68–70,

104, 108, 112, 114, 115, 118, 122–125,
127, 130, 148, 149, 158, 231

W
Welded beam, 87, 88, 106, 107, 113, 117, 128,

129, 153, 156, 159, 160
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